S09.1 Buffon's Needle & Monte Carlo Simulation

แชร์
ฝัง
  • เผยแพร่เมื่อ 12 ธ.ค. 2024

ความคิดเห็น • 31

  • @mahmoudramzy4878
    @mahmoudramzy4878 5 ปีที่แล้ว +33

    This is the best and most in depth video I found about the problem. Also the only one that doesn't make unnecessary simplifications. Thank you.

  • @morganjones7428
    @morganjones7428 3 ปีที่แล้ว +6

    An absolutely beautiful and profound result explained by an exceptionally talented teacher!!

  • @deepakjoshi1426
    @deepakjoshi1426 5 ปีที่แล้ว +9

    All the videos of this course are awesome. All the concepts are so easy to understand in this course.
    John Tsitsiklis is amazing !!
    THANK YOU JOHN !! THANK YOU MIT !!

  • @henrymiller5709
    @henrymiller5709 5 ปีที่แล้ว +9

    great teacher does not say too many words,but everyword they say count

  • @vigneshrb2529
    @vigneshrb2529 7 หลายเดือนก่อน

    it blew my mind when I got to know we found the value of pi using complete randomness. Amazing problem and an amazing explanation.

  • @pablock0
    @pablock0 ปีที่แล้ว

    I'm loving these classes. This one is particularly good. Thanks professor Tsitsiklis and MIT.

  • @brianwahome5789
    @brianwahome5789 5 ปีที่แล้ว +5

    Thank you so much! And the accent makes it even better!

  • @LNJP13579
    @LNJP13579 4 ปีที่แล้ว +1

    Very nice example. Clarified a lot of fundamentals. Thanks for it.

  • @osmanakalin2442
    @osmanakalin2442 5 ปีที่แล้ว +4

    Big thanks for this video. That help me from France 🇫🇷 thanks 🙏🏻

  • @amalbalabid5758
    @amalbalabid5758 2 ปีที่แล้ว +1

    Awesome! Thanks for your clever explanation.

  • @totochandelier
    @totochandelier 5 ปีที่แล้ว +5

    Some kind of magic

  • @sannavig9566
    @sannavig9566 4 ปีที่แล้ว +1

    thank you for savig us, my lord

  • @christianfunintuscany1147
    @christianfunintuscany1147 4 ปีที่แล้ว +7

    I agree the range of the variable x is 0

    • @PD-vt9fe
      @PD-vt9fe 4 ปีที่แล้ว +6

      Well, basically the range depends on what theta represents. In the video, theta is the smallest angle formed by the line and the needle. in your suggestion, it is the angle, not the smallest one, so 0

  • @zpf-e1u
    @zpf-e1u 3 ปีที่แล้ว +1

    16:10 : Supplementary* instead of complementary

  • @sagensoren55
    @sagensoren55 17 วันที่ผ่านมา

    Very well explained sir

  • @shaileshwasti407
    @shaileshwasti407 2 ปีที่แล้ว

    So neat explanation

  • @asmita6368
    @asmita6368 3 ปีที่แล้ว

    Thank you professor .

  • @topgunjinhyung
    @topgunjinhyung 2 ปีที่แล้ว

    Thank you

  • @a6kme
    @a6kme ปีที่แล้ว +1

    Why does x vary from 0 to d/2? Shouldn't it vary from 0 to d?

    • @vigneshrb2529
      @vigneshrb2529 7 หลายเดือนก่อน

      x is the distance from the nearest line. It is greatest when the needle mid-point is exactly at the mid-point of 2 lines.

  • @magn8195
    @magn8195 4 ปีที่แล้ว +1

    How do you work out the uniform distribution of x and theta? What do you integrate?

    • @DaysAreOver
      @DaysAreOver 3 ปีที่แล้ว +3

      X has a range of [0, d/2]. So the uniform PDF should be 1/(d/2 - 0) = 2/d. Similarly, theta should be 1/(pi/2 - 0) = 2/pi.

  • @adityasahu96
    @adityasahu96 4 ปีที่แล้ว +2

    jesus !! wow

  • @valor36az
    @valor36az 5 ปีที่แล้ว

    Awesome

  • @jaydenou6818
    @jaydenou6818 ปีที่แล้ว

    In 10:23, Can someone explain why P(X

    • @jaydenou6818
      @jaydenou6818 ปีที่แล้ว +2

      essentially, the double integral represent the whole sample space (all the possibilities of the needles) if we do not set up lower & upper bounce , which means all the joint possibilities of f_{X,\theta} (x, \theta). However, we want to find P(X

  • @ДаниилПопов-у3з
    @ДаниилПопов-у3з 4 ปีที่แล้ว +1

    This problem may be simplified by assuming a coin radius r instead of a needle. In this case we won't be needed in PDF at all and such problem will be solved geometrically. An interesting special case, isn't it? Moreover, there is a geometrical solution for the original problem.

  • @sangrams
    @sangrams 4 ปีที่แล้ว

    👌