Simplify this Cube Root | Step-by-Step Explanation

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ธ.ค. 2024

ความคิดเห็น • 112

  • @sangam569
    @sangam569 3 ปีที่แล้ว +19

    Amazing problem ... Millions of thankuuu sir 💓💓

    • @PreMath
      @PreMath  3 ปีที่แล้ว +2

      Thanks Sangam for the visit! You are awesome 👍 Take care dear and stay blessed😃 Kind regards

    • @pramodgupta2998
      @pramodgupta2998 2 ปีที่แล้ว +1

      @@PreMath Isn't this answer the *golden ratio* ? 😱😱

  • @ramanivenkata3161
    @ramanivenkata3161 3 ปีที่แล้ว +7

    The occurrence of introducing 8/8 is simply Amazing. Don't think it will occur to anyone easily.
    Excellent. Hats off to the Professor.🙏

  • @benYaakov
    @benYaakov 3 ปีที่แล้ว +12

    Great , but is there any short trick or general formula to find it out ?

    • @giannibleya7690
      @giannibleya7690 2 ปีที่แล้ว +2

      Well, you can easily manage to turn such numbers to a square, but a cube would be a bit more difficult.

  • @dominiquebercot9539
    @dominiquebercot9539 3 ปีที่แล้ว +7

    Bonjour,
    Vous commencez votre démonstration avec l’idée d’utiliser le 8, parce que 8=2^3.
    Alors, si on utilise son intuition pour commencer, puis son expérience , pour « voir » à 5:40 , que a =b=1, on peut aussi se permettre de dire
    que le « squ5 » donne l’idée d’utiliser le nombre d’or. Il vérifie l’égalité x^2=x+1, donc. x^3 = x^2 + 1, puis. x^3 = (x + 1) + x .
    Avec x=(1+squ5) / 2, on a 2x+1= 2 + squ5. C’est donc OK
    Mon côté cartésien ( bien français ?), me fait penser que ce « problème » était plutôt une très belle devinette, et ça m’a fait passer un très bon moment. Merci!
    PS desolee d’écrire en français, mais mon anglais est tres mauvais !!!!

  • @netravelplus
    @netravelplus 3 ปีที่แล้ว +2

    Thank you, Sir! Looked tough but after your excellent explanation, the problem becomes easy.

  • @eccleshillstluke5352
    @eccleshillstluke5352 3 ปีที่แล้ว +2

    I guess the unstated issue is what the word "simplify" implies in the question. It means can I find an expression without nesting of root signs in it? Suppose the answer was something like ( a + b root c + d root e )? Well, firstly, there couldn't be lots of terms like root c and root e and so forth without getting terms with root c root e when you cubed it, so it must be only two terms: ( a + b root c ). Secondly, the c would have to be 5, because the root 5 term must come from the second and fourth terms of the expansion. And, thirdly, the a and b can't be fractions with large denominators, because those denominators would quickly get huge when the answer was cubed. It won't be "simplified" unless the answer is in the form a + b root 5 for some fairly small values of a and b.

  • @martinfenner3222
    @martinfenner3222 2 ปีที่แล้ว

    Thank you for this nice, little problem. To be honest, i was unable to solve it. But if some guesswork is allowed, you can try directly (u+v√5)³ = 2 + √5 with natural numbers u and v.
    Now one finds with your formular (a + b)³ = a³ + 3a²b + 3ab² + b³:
    (u + v√5)³ = u³ + 3v√5u² + 3 v²√5²u + √5³v³ = u³ + 3vu²√5 + 15v²u + 5v³√5 = (u³ + 15v²u) + (3vu² + 5v³)√5 := 2 + 1√5
    comparison results to another guess:
    (1) u³ + 15v²u = 2
    (2) 3vu² + 5v³ = 1
    Now to the smart part: the sum of coefficients on the left hand side in (1) is 1 + 15 = 16 doubles the similar sum in (2): 3 + 5 = 8, and the right hand side of (1) also double the right hand side in (2). This lets us try the final guess: v = u. Inserting this equality into (1) and (2) leads to
    (1´) u³ + 15 v²u = u³ + 15 u²*u = u³ + 15u³ = (15 + 1) u³ = 16u³ = 2 => u³ = 1/8 => u = v = 1/2
    (2´) 3vu² + 5v³ = 3 u*u² + 5 u³ = 3u³ + 5 u³ = (3 + 5) u³ = 8u³ = 1 => ... => u = v = 1/2
    inserting this into the given problem leads to the same final as your aproach: (2 + √5)^(1/3) = (1/2 + √5/2)³^(1/3) = 1/2 (1 + √5).
    Of cause, you should check this by taking to the cube:
    (1/2 (1 + √5))³ = 1/8 * (1+√5)³ = 1/8 * (1³ + 3 * 1² * √5 + 3 * 1 * √5² + √5³)= 1/8 * (1+ 3*√5³ + 3 * 5 + 5√5) = 1/8 * (16+8√5) = 2 +√5
    as expected.

  • @armacham
    @armacham 3 ปีที่แล้ว +7

    Alternate method of solution:
    make a new equation, cubert(2 + sqrt5) + cubert(2 - sqrt5) = c
    solve for c by cubing both sides: 4 - 3c = ccc
    You can solve the cubic equation. You get 3 roots, but 2 of them are imaginary. And you know that cubert(2 + sqrt5) must be a real number because cuberoot of a real number gives a real number. So you can eliminate the imaginary roots as solutions
    once you have a value for c (it turns out, c = 1) you have:
    cubert(2 + sqrt5) + cubert(2 - sqrt5) = 1
    since you want the value of cubert(2 + sqrt5), set x = cubert(2 + sqrt5)
    x + cubert(2 - sqrt5) = 1
    cubert(2 - sqrt5) = 1
    - x
    cube both sides
    2 - sqrt5 = 1 - 3x + 3xx - xxx
    substitute xxx = 2 + sqrt5
    2 - sqrt5 = 1 - 3x + 3xx - (2 + sqrt5)
    and from here, you have a quadratic equation in terms of x that is easy to solve

    • @robertveith6383
      @robertveith6383 3 ปีที่แล้ว

      The shorthand for cube root is "cbrt," just in the same way that "sqrt" is the shorthand for
      square root. So, your whole post should have "cbrt" written in place wherever you have "cubert"
      written.

    • @strikerstone
      @strikerstone 3 ปีที่แล้ว

      this is shit , we have to do the same thing what we are doing here to find your C , how you got 1 bruh?

    • @armacham
      @armacham 3 ปีที่แล้ว

      @@strikerstone It's a lot easier to solve a single cubic equation with one variable (4-3c=ccc) than it is to solve a system of two cubic equations with two variables.

    • @strikerstone
      @strikerstone 3 ปีที่แล้ว

      @@armacham can you give me a detailed explanation from (2+√5)^1/3 + (2-√5)^1/3 = c , to How to got 1?

    • @armacham
      @armacham 3 ปีที่แล้ว +2

      @@strikerstone Sure.
      let's say:
      u = 2 + sqrt5
      v = 2 - sqrt5
      u + v = 4
      u * v = 4 - 5 = -1
      cuberoot(u) + cuberoot(v) = c
      cube both sides
      u + 3cuberoot(uv)(cuberoot(u) + cuberoot(v)) + v = c^3
      we can substitute -1 for uv
      and we can substitute c for cuberoot(u) + cuberoot(v)
      to get:
      u + v + 3cuberoot(-1)c = c^3
      we know cuberoot(-1) = -1
      and we can substitute u+v = 4
      and move everything to the same side
      c^3 + 3c - 4 = 0
      this is a cubic equation. By the rational root theorem, if there is any integer solution, it would be one of the following:
      -4, -2, -1, 1, 2, 4
      so it makes sense to test those 6 values first
      if you test them all, you will see that c =1 is a solution.
      if none of those 6 values worked, that would mean the answer is not rational. There are other ways to solve a cubic equation, namely the cubic formula
      Since you have a solution (c=1) you can factor out (c-1) from the equation in order to find the other 2 solutions
      you get that c^3 + 3c - 4 = (c-1)(c^2 + c + 4)
      then you can use the quadratic formula to solve c^2 + c + 4 = 0. You will see the two solutions are both complex.
      And going back to the beginning of the problem cuberoot(2 + sqrt5) and cuberoot(2 - sqrt5) are both real numbers, not complex. So of the 3 solutions to the cubic equation, you reject the two complex ones, and you are left with "1"

  • @davidbrisbane7206
    @davidbrisbane7206 2 ปีที่แล้ว

    @6:15
    Assuming a and b are integers, then
    we should really factorise a³ + 15ab² = 16 as
    a(a² + 15b²) = 16.
    So, a could be equal to 1, 2, 4, 8 or 16, as these are the factors of 16 and a must be positive because a² + 15b² is positive.
    However, if we try these values of a, then only a = 1 is a possible solution with a² +15b² = 16 if b is to be an integer, requiring that b² = 1, so b = -1 or 1.
    However if we try b = -1 with a = 1 in 3a²b + 5b³, we get -3 - 5 = - 8 ≠ 8, so this is not a solution.
    However, when we try a = 1 and b = 1 in 3a²b + 5b³, we get 3 + 5 = 8, which is a solution.
    So, (a, b) = (1, 1) is the *only * integer solution possible.

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 2 ปีที่แล้ว

    मस्त,आवडलं

  • @MillayNagatsuki
    @MillayNagatsuki 3 ปีที่แล้ว +3

    the value of ³√(2+√5) is approximately 1.62
    all numbers around 1.62 are (1+√5)/2.

    • @prioris55555
      @prioris55555 3 ปีที่แล้ว +1

      that's what i say
      all those formulas are not teaching how to get to the answer
      1.61803399
      plus they are vague questions
      it's all abstractions which is the worst way to teach math

  • @dipalipanchal9145
    @dipalipanchal9145 18 วันที่ผ่านมา

    Thank you very much sir 🙏🏻🙏🏻🙏🏻🙏🏻🙏🏻

  • @rogerdudra178
    @rogerdudra178 2 ปีที่แล้ว

    Greetings from the BIG SKY. Good problem.

  • @prabhudasmandal6429
    @prabhudasmandal6429 3 ปีที่แล้ว +1

    Actually (2+√5) is the outcome of 1/8(1+√5) power3 .that is why 8,/8 multiplication is applied.if you work out (1+√5)power 3, you will get 8(2+√5).students should keep it in mind like other formulas.

  • @mustafaalwakeel7458
    @mustafaalwakeel7458 ปีที่แล้ว

    Why did you rise the numerator to the power 3 except the dinomerator

  • @lavoiedereussite922
    @lavoiedereussite922 2 ปีที่แล้ว

    very good.
    thank you teatcher.

  • @sagemoma
    @sagemoma 3 ปีที่แล้ว +3

    You are a very good teacher.
    Thank you.

    • @PreMath
      @PreMath  3 ปีที่แล้ว

      You are welcome dear!
      Thanks Elisheva for the feedback. You are awesome 👍 Take care dear and stay blessed😃

  • @drpkmath12345
    @drpkmath12345 3 ปีที่แล้ว +2

    Hello my friend! A very smiliar question with the one I covered not too long ago~ Haha you did a fantastic job as always! Lets keep rocking!

  • @hanswust6972
    @hanswust6972 2 ปีที่แล้ว

    It was clear from the onset that the expression inside the root had to be a perfect cube, the issue was to find the path to find the solution.
    And I wonder if there is still another pair of _a_ and _b_ that satisfies the equation.

    • @davidbrisbane7206
      @davidbrisbane7206 2 ปีที่แล้ว

      No. Although the presenter did not show it, the only integer solution is (a, b) = (1, 1).

  • @mustafizrahman2822
    @mustafizrahman2822 3 ปีที่แล้ว +3

    Thanks for nice solving. It was really great.

    • @PreMath
      @PreMath  3 ปีที่แล้ว +1

      Most welcome dear 😊
      Thanks Rahman dear for the feedback. You are awesome 👍 Take care dear and stay blessed😃

  • @davidbrisbane7206
    @davidbrisbane7206 2 ปีที่แล้ว

    Uses the same method as described in the video, we can deduce that ∛(2 - √5) = (1 - √5)/2
    So, ∛(2 + √5) + ∛(2 - √5) =
    (1 + √5)/2 + (1 - √5)/2 = 1.
    In fact, if we use the cubic equation formula to find the real root of x³ + 3x - 4 = 0, we find the answer is
    x = ∛(2 + √5) + ∛(2 - √5), which by inspection of the cubic equation requires the real root of x to be x = 1.

  • @henrbenbrown
    @henrbenbrown 2 ปีที่แล้ว

    excellent! thank you sir!

  • @sahilpatel0701
    @sahilpatel0701 3 ปีที่แล้ว +2

    Could you explain how and why you put = (a+b sqrt5)^3 / 2^3? Why is that equal to (16 + 8 sqrt5) / 8? Thank you for the video

    • @johnporcella2375
      @johnporcella2375 2 ปีที่แล้ว +1

      I was wondering that too!
      Could it be because we want the top and bottom to be cubed, since we shall find the cube root, which will cancel the cubes?

  • @nicogehren6566
    @nicogehren6566 3 ปีที่แล้ว +1

    beautiful solution sir thank u and keep it up!

  • @manikbanik4796
    @manikbanik4796 3 ปีที่แล้ว

    Very good.

  • @SuperYoonHo
    @SuperYoonHo 2 ปีที่แล้ว

    nice

  • @satyapalsingh4429
    @satyapalsingh4429 3 ปีที่แล้ว

    You are genius.

  • @BruceEEvans1
    @BruceEEvans1 3 ปีที่แล้ว

    HITH do figure the new result is simplified???

    • @keithwood6459
      @keithwood6459 2 ปีที่แล้ว

      Because there is only one radical, and it is lower order.

  • @randaya5854
    @randaya5854 3 ปีที่แล้ว +2

    What a creative solution!

    • @PreMath
      @PreMath  3 ปีที่แล้ว +1

      Thanks dear Minh
      You are awesome 👍 Take care dear and stay blessed😃

  • @VolkGreg
    @VolkGreg 3 ปีที่แล้ว +1

    The answer (1 + Sqrt(5)) / 2 = Phi, the golden ratio. Phi^3 = 2 + Sqrt(5).

  • @meandtheboeingsbutded2242
    @meandtheboeingsbutded2242 3 ปีที่แล้ว

    Yo long time dont see, im 5plus5i, remember me?

  • @SuperYoonHo
    @SuperYoonHo 2 ปีที่แล้ว

    amazing!!!

  • @kennethcook4826
    @kennethcook4826 3 ปีที่แล้ว +2

    why the 8 i understand that we need a cube root but why 2

    • @SingaporeSkaterSam
      @SingaporeSkaterSam 3 ปีที่แล้ว +1

      I feel like that step comes too early, you’d first inspect the coefficients of the expanded cube and see what you need - and only 8 does the job.

  • @tukarampagad5067
    @tukarampagad5067 2 ปีที่แล้ว

    Cuberoot of (2+√5) is the given problem
    We know that universal formula
    Cube (a+b)= Cube a+ Cube b+ 3ab(a+b)
    Cuberoot of cube (a+b) is the given problem. It can be written as below
    Cube of (2+√5)=Cube a+ Cube b+ 3 ×2×√5(2+√5)
    Compare this with
    Cube a+ cube b+3ab(a+b)=Cube(a+b)
    Hence,
    Cuberoot of Cube (2+√5)=2+√5
    (2+√5) is the answer .
    Basically , I am 62yrs old physician practicing medicine. I am interested in mathematics from my school days. Out of curiosity I am solving the mathematical problem. If I am wrong, please forgive me

    • @johnporcella2375
      @johnporcella2375 2 ปีที่แล้ว

      Have you ended up where you started?

  • @aryanojha2020
    @aryanojha2020 3 ปีที่แล้ว

    Very helpful

  • @Okkk517
    @Okkk517 หลายเดือนก่อน

    By observing that (1+✔5)^3=16+8✔5 we can short cut the steps to solve the problem.

  • @MathZoneKH
    @MathZoneKH 3 ปีที่แล้ว

    great videos sir! I leaned a lot from PreMath.

    • @PreMath
      @PreMath  3 ปีที่แล้ว +1

      Great to hear! You are too generous my friend.
      Thanks dear for the feedback. You are awesome 👍 Take care dear and stay blessed😃

  • @242math
    @242math 3 ปีที่แล้ว

    very well done, thanks for sharing

    • @PreMath
      @PreMath  3 ปีที่แล้ว

      Thank you! Cheers!
      Thanks dear for the feedback. You are awesome 👍 Take care dear and stay blessed😃

  • @billylowgroundvytaszukas5797
    @billylowgroundvytaszukas5797 3 ปีที่แล้ว +1

    o my goodnessss!!!!

  • @mendozajovy
    @mendozajovy 2 ปีที่แล้ว

    My issue in this problem is that it can be solve by a scientific calculator. There is no unknown inside the cube root.

  • @darkomarkovic3373
    @darkomarkovic3373 3 ปีที่แล้ว

    Very nice solution 👍

  • @rishabhjain728
    @rishabhjain728 3 ปีที่แล้ว

    Let x=(2+√5)^1/3 ; -1/x=(2-√5)^1/3
    And we know that x-1/x=1
    So x=(√5+1)/2 ans

  • @Dondi72
    @Dondi72 3 ปีที่แล้ว

    Thank you.

  • @deventerprises2640
    @deventerprises2640 ปีที่แล้ว

    btw the answer at last wast surprisingly the golden ratio

  • @jbreezy101
    @jbreezy101 3 ปีที่แล้ว +1

    The Golden ratio!

  • @AshishKumar-ks4rq
    @AshishKumar-ks4rq 3 ปีที่แล้ว +2

    Wow

    • @PreMath
      @PreMath  3 ปีที่แล้ว

      Thanks Ashish dear for the feedback. You are awesome 👍 Take care dear and stay blessed😃

  • @aakarshansubedi174
    @aakarshansubedi174 3 ปีที่แล้ว

    Thank u sir . I am from nepal

  • @williamspostoronnim9845
    @williamspostoronnim9845 ปีที่แล้ว +1

    Ей-богу, я ни за что бы не решил так лихо!

  • @randomjudgements8852
    @randomjudgements8852 ปีที่แล้ว

    golden ratio in answer !

  • @aprils376
    @aprils376 2 ปีที่แล้ว

    Why does (16+8√5)/2^3 = (a+b√5)^3 / 2^3?
    This is the step/leap in the process that does not make sense.

  • @rafaelivan1830
    @rafaelivan1830 3 ปีที่แล้ว

    mindblown! :D

  • @bobbyheffley4955
    @bobbyheffley4955 ปีที่แล้ว

    Golden ratio

  • @zerilioner639
    @zerilioner639 3 ปีที่แล้ว

    Hi, I have a math question about The perimeter of an isosceles triangle is 38 m. Find the length of the sides of the triangle of maximum area. Would you be able to make a video and explain it?

    • @ernestdecsi5913
      @ernestdecsi5913 3 ปีที่แล้ว

      Heron képletből kell kiindulni, melyekben van: a, c=b, majd kapok egy függvényt, ebben, b=(38-a)/2, ezután x=a. A terület az "y". Majd deriválással megkeresem a maximumot.

    • @highlyeducatedtrucker
      @highlyeducatedtrucker 3 ปีที่แล้ว

      Easy if you know a little calculus. Not quite as easy if you don't.

    • @zerilioner639
      @zerilioner639 3 ปีที่แล้ว

      @@highlyeducatedtrucker Easy? Please let me know the solution.

    • @highlyeducatedtrucker
      @highlyeducatedtrucker 3 ปีที่แล้ว +1

      @@zerilioner639 Draw an isosceles triangle. Label the two equal sides "a". Label the 3rd side "b".
      Then draw a perpendicular line from side "b" to the opposite vertex. Label this side "h".
      Area of the triangle is (1/2)*b*h.
      Now you need to get "b" and "h" in terms of a single variable. "a" is the easiest.
      Perimeter of the triangle is 38. So a + a + b = 38, or 2a + b = 38. So therefore b = 38-a.
      Area of the triangle is now (1/2)*(38-a)*h.
      The perpendicular line from "b" to the vertex bisects b. So you have a right triangle with sides (b/2) and (h) and hypotenuse (a). So (b/2)^2 + h^2 = a^2.
      Solve for h, plug in to the Area equation. Take the derivative of the Area equation with respect to "a", set result equal to zero. Solve for "a". That's the "a" that maximizes the value of the area.

    • @zerilioner639
      @zerilioner639 3 ปีที่แล้ว

      @@highlyeducatedtrucker Can you be able to make a video to explain it clearly?

  • @aakashkarajgikar3935
    @aakashkarajgikar3935 3 ปีที่แล้ว +3

    7:45 Yes, this is better. The way you cancelled what needs to undo.

    • @PreMath
      @PreMath  3 ปีที่แล้ว +1

      Thanks Aakash for the visit! You are awesome 👍 Take care dear and stay blessed😃 Kind regards

    • @aakashkarajgikar3935
      @aakashkarajgikar3935 3 ปีที่แล้ว

      @@PreMath You're Welcome! You too stay blessed.

  • @jaysun7633
    @jaysun7633 3 ปีที่แล้ว +2

    Golden ratio!!

    • @PreMath
      @PreMath  3 ปีที่แล้ว +1

      Excellent Jay
      Thanks dear for the feedback. You are awesome 👍 Take care dear and stay blessed😃

  • @extraknowledge2733
    @extraknowledge2733 2 ปีที่แล้ว

    Earlier Last step not clearly disscus.....

  • @Massaraksh7
    @Massaraksh7 3 ปีที่แล้ว +1

    Guessing

  • @Germankacyhay
    @Germankacyhay 3 ปีที่แล้ว +2

    👍

    • @PreMath
      @PreMath  3 ปีที่แล้ว +1

      Thanks German for the visit! You are awesome 👍 Take care dear and stay blessed😃 Kind regards

    • @Germankacyhay
      @Germankacyhay 3 ปีที่แล้ว

      @@PreMath Й тобі дякую. Я не знаю англійської, хочу вивчити, тому пізніше перекладу.

  • @keithwood6459
    @keithwood6459 2 ปีที่แล้ว

    I wrote it as x = 3√(2+√5). Then, cubing both sides, x^3 = 2+√5. Then squaring both sides, x^6 = 4 + 4√5 + 5, simplifying to x^6 = 9 + √(16x5), simplifying to x^6 = 9 + √80, then used a calculator to yield x=1.618... WHICH calculates out to be THE SAME NUMBER AS HE GOT!

  • @giuseppemalaguti435
    @giuseppemalaguti435 2 ปีที่แล้ว

    (1+sqrt5)/2

  • @dwaipayandattaroy9801
    @dwaipayandattaroy9801 3 ปีที่แล้ว

    5 root 9

  • @graemedurie9094
    @graemedurie9094 2 ปีที่แล้ว

    I'm not sure how that answer is any simpler than the starting point.

    • @Livio_05
      @Livio_05 2 ปีที่แล้ว

      the answer is the golden ratio

    • @doubledee9675
      @doubledee9675 2 ปีที่แล้ว

      @@Livio_05 Yes, but then (i) that's not exactly a simplified concept and (ii) is it a simplification of the original?

    • @Livio_05
      @Livio_05 2 ปีที่แล้ว

      @@doubledee9675 well yes the golden ratio is the same as the original but written much simpler, since there is only one square root instead of a square and a cube root. You cant expect this thing to magically turn into a 1 or a 2 you know

    • @doubledee9675
      @doubledee9675 2 ปีที่แล้ว

      @@Livio_05 I was hoping for that.

  • @shrikrishnagokhale3557
    @shrikrishnagokhale3557 2 ปีที่แล้ว

    Answer is the golden ratio

  • @binamahadani3267
    @binamahadani3267 3 ปีที่แล้ว

    (1,1)

  • @Вика-Молния
    @Вика-Молния 3 ปีที่แล้ว +1

    Хочу попросить автора писать цифры большим шрифтом, а то плохо смотреть видео, очень мелкие.

    • @PreMath
      @PreMath  3 ปีที่แล้ว +1

      Спасибо за то, что дали нам знать.
      Большое спасибо за отзыв. Ты потрясающий 👍 Береги себя, дорогая, и оставайся счастливым

  • @rangaswamyks8287
    @rangaswamyks8287 3 ปีที่แล้ว

    The problem is not challenging and not interesting

  • @MrDenislynch
    @MrDenislynch 3 ปีที่แล้ว

    And your answer is a famous number; it’s phi

    • @PreMath
      @PreMath  3 ปีที่แล้ว

      Wow!
      Thanks Denis for the feedback. You are awesome 👍 Take care dear and stay blessed😃

  • @timiparis1764
    @timiparis1764 ปีที่แล้ว

    How did he get 8 ➗ 8

  • @davidbrisbane7206
    @davidbrisbane7206 2 ปีที่แล้ว

    Try simplifying ∛(3 + √5) using the same method 😀.