Infinite Series - Numberphile

แชร์
ฝัง
  • เผยแพร่เมื่อ 31 ม.ค. 2025

ความคิดเห็น • 798

  • @snowgw2
    @snowgw2 5 ปีที่แล้ว +1449

    Hello, you can't end it like that. Not without explaining how it becomes Pi^2/6

    • @4dragons632
      @4dragons632 5 ปีที่แล้ว +221

      I agree completely. I really want to know as well.
      But a quick wikipedia dive suggests that this topic would take at least a whole video of it's own. I hope they're going to do it because I'm getting equal parts confused and fascinated by this.

    • @RedBar3D
      @RedBar3D 5 ปีที่แล้ว +31

      Agreed! Let's hope they follow it up with another video.

    • @ipassedtheturingtest1396
      @ipassedtheturingtest1396 5 ปีที่แล้ว +73

      My professor did the same thing in our calculus script. Just wrote "actually, you can show that this series converges to π²/6." and left it there.
      Might be a great strategy to encourage curious students (or viewers, in this case) to think about it for themselves, though.

    • @sirdiealot7805
      @sirdiealot7805 5 ปีที่แล้ว +37

      He also fails to make an argument for why he thinks that the first series ends up as equal to 2.

    • @andretimpa
      @andretimpa 5 ปีที่แล้ว +45

      The easiest rigorous proof iirc involves finding the Fourier Series of x^2, so it would take a bit more of explaning. You can look up "Basel Problem" in wikipedia for more info

  • @Kilroyan
    @Kilroyan 5 ปีที่แล้ว +108

    can I just compliment the animations in this video? in terms of presentation, numberphiles has come such a long way, and I love it!

    • @tablechums4627
      @tablechums4627 3 ปีที่แล้ว

      Props to the animator.

    • @lazertroll702
      @lazertroll702 3 ปีที่แล้ว

      I miss the days of simple shorn parchment and sharpie.. 😔

  • @JJ-kl7eq
    @JJ-kl7eq 5 ปีที่แล้ว +314

    Introducing the Numberphile video channel which absolutely will never, ever be discontinued - The Infinite Series.

    • @b3z3jm3nny
      @b3z3jm3nny 5 ปีที่แล้ว +58

      RIP the PBS TH-cam channel of the same name :(

    • @JJ-kl7eq
      @JJ-kl7eq 5 ปีที่แล้ว +17

      Exactly - that was one of my favorite channels.

    • @michaelnovak9412
      @michaelnovak9412 5 ปีที่แล้ว +9

      What happened to PBS Infinite Series is truly a tragedy. It was my favorite channel on TH-cam honestly.

    • @-Kerstin
      @-Kerstin 5 ปีที่แล้ว +3

      PBS Infinite Series being discontinued wasn't much of a loss if you ask me.

    • @johanrichter2695
      @johanrichter2695 5 ปีที่แล้ว +1

      @@-Kerstin Why? Did you find anything wrong with it?

  • @zuzusuperfly8363
    @zuzusuperfly8363 5 ปีที่แล้ว +9

    Shout out to whoever did the work of adding the animation of an enormous sum that only stays on screen for about 2 seconds. You're the hero. Or depending on how it was edited, the person who wrote it out. Edit: And the person doing the 3D animations.

    • @pmcpartlan
      @pmcpartlan 5 ปีที่แล้ว

      Glad it's appreciated! Thanks

  • @erumaayuuki
    @erumaayuuki 5 ปีที่แล้ว +352

    Matt Parker used this series and equation to calculate pi on pi-day with multiple copies of his book named Humble Pi.

    • @incription
      @incription 5 ปีที่แล้ว +14

      of course he did, haha

    • @frederf3227
      @frederf3227 5 ปีที่แล้ว +4

      Ah yes I remember how he got 3.4115926...

    • @Danilego
      @Danilego 5 ปีที่แล้ว +4

      @Perplexion Dangerman wait what

    • @InDstructR
      @InDstructR 5 ปีที่แล้ว +1

      @@frederf3227 yes... 3.411....

    • @brennonstevens467
      @brennonstevens467 5 ปีที่แล้ว +1

      @Perplexion Dangerman ~arrogance~

  • @ilyrm89
    @ilyrm89 5 ปีที่แล้ว +727

    My mind cannot handle the different kind of paper!

    • @debayanbanerjee
      @debayanbanerjee 5 ปีที่แล้ว +14

      Yep. Stands out like a sore thumb.

    • @rebmcr
      @rebmcr 5 ปีที่แล้ว +15

      It seems they had a shortage of brown paper rolls and decided to use brown envelopes instead!

    • @BloodSprite-tan
      @BloodSprite-tan 5 ปีที่แล้ว +8

      for some reason they are called manilla envelopes, i suggest you check your eyes, because that color is not brown, it's closer to a buff or yellowish gold.

    • @lucashermann7262
      @lucashermann7262 5 ปีที่แล้ว +10

      Its okay to be autistic

    • @rebmcr
      @rebmcr 5 ปีที่แล้ว +3

      @@BloodSprite-tan well it's a lot flipping closer to brown than white!

  • @maxpeeters8688
    @maxpeeters8688 5 ปีที่แล้ว +8

    Another fun bit of mathematics related to this topic:
    In the video, it is explained that 1 + (1/2) + (1/3) + ... diverges and that 1 + (1/2)^2 + (1/3)^2 + ... converges.
    So for a value s, somewhere between 1 and 2, you could expect there to be a turning point such that 1 + (1/2)^s + (1/3)^s + ... switches from being divergent to being convergent.
    This turning point happens to be s = 1. That means that for any value of s greater than 1, the series converges.
    Therefore, even something like 1 + (1/2)^1.001 + (1/3)^1.001 + ... converges.

    • @samharper5881
      @samharper5881 5 ปีที่แล้ว +1

      Yes. Any infinite sum of (1/x)^a is Zeta(a) (the Riemann Zeta function and there's a video of it on Numberphile) and zeta(>1) is always positive. Zeta(1.001) (aka Zeta(1+1/1000)) as per your example is a little over 1000 (1000.577...) Zeta(1+1/c) as c tends to infinity is c+γ, where γ is the Euler-Mascheroni constant (approx 0.57721...).
      And then that links back to the other infinite sum mentioned in the video. The Euler-Mascheroni constant is also the limit difference between the harmonic sum to X terms and ln(X). It's not too difficult to show that link algebraically.

    • @UpstreamNL
      @UpstreamNL 2 หลายเดือนก่อน

      Cool!

  • @CCarrMcMahon
    @CCarrMcMahon 5 ปีที่แล้ว +142

    "PI creeps in where you would least expect it..." and so does this video.

  • @EddyWehbe
    @EddyWehbe 5 ปีที่แล้ว +19

    The last result blew my mind. I hope they show the proof in a future video.

    • @user-ct1ns6zw4z
      @user-ct1ns6zw4z 5 ปีที่แล้ว +2

      Probably too hard of a proof for a numberphile video. 3blue1brown has a video on it though.

  • @jessecook9776
    @jessecook9776 5 ปีที่แล้ว +40

    I just finished teaching about infinite series with my students in calculus 2. Sharing with my students!

    • @citrusblast4372
      @citrusblast4372 5 ปีที่แล้ว +3

      I remember this from pre cal :D

  • @NatetheAceOfficial
    @NatetheAceOfficial 5 ปีที่แล้ว +35

    The animations for this episode were fantastic!

  • @ekadria-bo4962
    @ekadria-bo4962 5 ปีที่แล้ว +100

    Achiled and toytoyss.
    Where is James Grime?

  • @mrnarason
    @mrnarason 5 ปีที่แล้ว +6

    He's explanation is very much lucid. Being a fields medalist must be incredible.

  • @ruhrohraggy1313
    @ruhrohraggy1313 5 ปีที่แล้ว +72

    An infinite number of mathematicians enter a bar. The first one orders one beer, the second one orders half a beer, the third orders a quarter of a beer, the fourth orders an eighth of a beer, and so on. After taking orders for a while, the bartender sighs exasperatedly, says, "You guys need to know your limits," and pours two beers for the whole group.

    • @Oskar5707
      @Oskar5707 ปีที่แล้ว

      I'm stealing this😎

    • @bo-dg3bh
      @bo-dg3bh ปีที่แล้ว +1

      lol poor mathematicians

  • @paulpantea9521
    @paulpantea9521 5 ปีที่แล้ว +11

    This guy is a genius. Please have more with him!

    • @eugene7518
      @eugene7518 7 หลายเดือนก่อน

      The genius forgot to mention that the tortoise is always moving forward like Achilles is.

  • @HomeofLawboy
    @HomeofLawboy 5 ปีที่แล้ว +102

    When I saw Infinite Series in the title my heart skipped a beat because I thought it was the channel infinite Series being revived.

    • @guangjianlee8839
      @guangjianlee8839 5 ปีที่แล้ว +23

      We do need Pbs Infinite Series back

    • @ekadria-bo4962
      @ekadria-bo4962 5 ปีที่แล้ว +7

      Agree with you..

    • @michaelnovak9412
      @michaelnovak9412 5 ปีที่แล้ว +7

      What happened to PBS Infinite Series is truly a tragedy. Honestly it was my favorite channel on TH-cam.

    • @tanishqbh
      @tanishqbh 5 ปีที่แล้ว +5

      I thought infinite series was still kicking. What happened?

    • @michaelnovak9412
      @michaelnovak9412 5 ปีที่แล้ว +10

      @@tanishqbh The hosts wanted to continue but PBS refused to continue supporting the channel, so it was closed down.

  • @rakhimondal5949
    @rakhimondal5949 5 ปีที่แล้ว +2

    Those animations help to get the concept more clearly

  • @electrikshock2950
    @electrikshock2950 5 ปีที่แล้ว

    I like this professor , you can see that he loves what he's doing and is enthused about it but he doesn't let it get in the way of him explaining

  • @asdfghj7911
    @asdfghj7911 5 ปีที่แล้ว +1

    What a coincidence that you would post a video with Charles Fefferman today. I just handed in my dissertation which was on his disproof of the disc conjecture.

  • @Xonatron
    @Xonatron 5 ปีที่แล้ว +1

    0:51 the story according to the paradox is the tortoise is not caught *because* an infinite number of things have to happen and therefore never happen.

    • @scepgineer
      @scepgineer 5 ปีที่แล้ว +1

      The paradox was proven to be a falsidical paradox once we discovered calculus.
      Say one covers 1 length unit in 1 unit of time, then 1/2 length unit in 1/2 of a time unit, then 1/4 length unit in 1/4 of a time unit, then 1/8 length unit in 1/8 of a time unit and so on. Effectively traveling with 1 unit of velocity, covering a distance of 2 length units in 2 units of time.
      "would never happen" would imply that it is not possible to mathematically do what I described above.
      Granted this is only a mathematical problem not a problem of physics, since in the physical world there comes a point where spacetime can't be meaningfully divided beyond the Planck units.

    • @Xonatron
      @Xonatron 5 ปีที่แล้ว

      @@scepgineer Exactly. Calculus solved it. One way to visualize it is the area of a triangle, where you only move half way towards the 'tail' of it, counting up each area piece (don't bother with the math; just a visual exercise), never getting to the end, although the answer is finite and known.

    • @scepgineer
      @scepgineer 5 ปีที่แล้ว

      @@Xonatron Yea. Instead of triangles I've seen it with a square example, adding up to 2 square area units.

  • @justzack641
    @justzack641 5 ปีที่แล้ว +187

    The fact they're using a different type of paper disturbs me

    • @mauz791
      @mauz791 5 ปีที่แล้ว +7

      And it switches for the animations as well. Dammit.

  • @sasisarath8675
    @sasisarath8675 4 ปีที่แล้ว +5

    I love the way he handled the infinity question !

  • @adammullan5904
    @adammullan5904 5 ปีที่แล้ว +81

    I was convinced that Numberphile already had a video on all this, but I think I've just seen Matt Parker and VSauce both do it before...

    • @joeyknotts4366
      @joeyknotts4366 5 ปีที่แล้ว +4

      I think numberphile has done it... I think it was not Matt Parker, but the red headed British mathematician.

    • @mathyoooo2
      @mathyoooo2 5 ปีที่แล้ว

      @@joeyknotts4366 James Grime?

    • @joeyknotts4366
      @joeyknotts4366 5 ปีที่แล้ว

      @@mathyoooo2 ye

    • @samharper5881
      @samharper5881 5 ปีที่แล้ว +1

      And Vsauce doesn't know the difference between lay and lie so he doesn't matter anyway

    • @adammullan5904
      @adammullan5904 5 ปีที่แล้ว +1

      Sam Harper that’s pretty prescriptivist of you tbh

  • @koenth2359
    @koenth2359 5 ปีที่แล้ว +4

    In Zeno's version, the tortus is given a head start, but also walks, albeit slowlyer than Achilles.
    The point is that A runs to the starting point of T, but T is not there anymore, and next A has to run to where T is now, etc. So each step is smaller in a geometric series, but not necessarily one with ratio 1/2.

  • @1959Edsel
    @1959Edsel 5 ปีที่แล้ว

    This is the best explanation I've seen of why the harmonic series diverges.

  • @InMyZen
    @InMyZen 5 ปีที่แล้ว +4

    loved this video, I coded the infinite series while going along with the video, cool stuff.

  • @stormsurge1
    @stormsurge1 5 ปีที่แล้ว +171

    I think you mixed up two Zeno's paradoxes, Achilles and the Tortoise and Dichotomy paradox.

    • @jerry3790
      @jerry3790 5 ปีที่แล้ว +61

      To be fair, he’s a fields medalist, not a person who studies Greek philosophers

    • @SirDerpingston
      @SirDerpingston 5 ปีที่แล้ว +3

      @@jerry3790 ...

    • @gregoryfenn1462
      @gregoryfenn1462 5 ปีที่แล้ว +13

      I was thinking that too.. does thus channel not have editors to do proof-read this stuff?????

    • @silkwesir1444
      @silkwesir1444 5 ปีที่แล้ว +21

      as far as I can tell they are very much related and it may be reasonable to bunch them together, as not two distinct paradoxes but two versions of the same paradox.

    • @muralibhat8776
      @muralibhat8776 5 ปีที่แล้ว +14

      @@gregoryfenn1462 this is a math channel mate. proof read what?
      achillies and the tortoise talks about the same problem as zeno's paradox of dichotomy

  • @lornemcleod1441
    @lornemcleod1441 4 ปีที่แล้ว

    This is great, I'm learning about these I my Cal II class, and this just deepens my understanding of the infinite sums and series

  • @Smokin438
    @Smokin438 5 ปีที่แล้ว +3

    This video is fantastic, more please

  • @apolotion
    @apolotion 5 ปีที่แล้ว +1

    Just took a calculus quiz that required us to use the comparison theorem to prove that the integral from 1 to infinity of (1-e^-x)/(x^2)dx is convergent. I happened to watch this just before taking the quiz and essentially saw it from a different approach. Numberphile making degrees over here 😂

  • @johnwarren1920
    @johnwarren1920 5 ปีที่แล้ว +102

    Nice presentation, but please don't use the wiggly (orange) numbers effect. It just makes it hard to read.

    • @rosiefay7283
      @rosiefay7283 5 ปีที่แล้ว +9

      I agree. Your constantly flickering text made the video unwatchable. -1. Please, Numberphile, never do this again.

    • @richardparadox7309
      @richardparadox7309 5 ปีที่แล้ว +11

      wiggly orange 🍊

    • @randomdude9135
      @randomdude9135 5 ปีที่แล้ว +3

      Wiggly orange 🍊

    • @uwuifyingransomware
      @uwuifyingransomware 5 ปีที่แล้ว +1

      Wiggly orange 🍊

    • @denyraw
      @denyraw 5 ปีที่แล้ว

      wiggly orange 🍊

  • @skarrambo1
    @skarrambo1 5 ปีที่แล้ว +89

    It's too late for an April Fools; where's the BROWN?!

  • @jriceblue
    @jriceblue 5 ปีที่แล้ว +1

    Your graphics person has the patience of a saint.

  • @TaohRihze
    @TaohRihze 5 ปีที่แล้ว +30

    So if 1/N^1 diverges, and 1/N^2 is bounded. So at which power between 1 and 2 does it switch from bounded to diverging?

    • @SlingerDomb
      @SlingerDomb 5 ปีที่แล้ว +30

      at exactly 1
      well, you can study this topic named "p-series" if you want to.

    • @Anonimo345423Gamer
      @Anonimo345423Gamer 5 ปีที่แล้ว +5

      As soon as 1/n^a has an a>1 it converges

    • @josephsaxby618
      @josephsaxby618 5 ปีที่แล้ว +7

      1, if k is greater than 1, Σ1/n^k converges. If k is less than or equal to 1, Σ1/n^k diverges.

    • @SamForsterr
      @SamForsterr 5 ปีที่แล้ว +1

      Taoh Rihze If k is any real number greater than one, then the sum of 1/N^k converges

    • @lagomoof
      @lagomoof 5 ปีที่แล้ว +1

      sum of n from 1 to infinity of 1/n^k converges for all k > 1. So there's no answer to your question because there's no 'next' real number greater than 1, but any number greater than 1 will do. k=1+1/G64 where G64 is Graham's Number will result in convergence, for example. But if you attempt to compute the limit iteratively it might take some time.

  • @oscarjeans4119
    @oscarjeans4119 5 ปีที่แล้ว +1

    I like this guy! I hope he appears more often!

  • @zperk13
    @zperk13 5 ปีที่แล้ว

    2:00 i wrote some code to see how long it would take to get to a number. I am not going to do 50 trillion as that would take a way too long, so I will do 20. You might be thinking I'm making it to easy but I tried other numbers and they were just taking too long. To get to 20 you would need the denominator to get to 272,400,601. That took 27 seconds to computer. For comparison, it took half a second to calculate 16, and it took 76 seconds to calculate 21. 740,461,602 is the denominator you have to get to to reach 21 btw.

  • @randomaccessfemale
    @randomaccessfemale 5 ปีที่แล้ว +3

    What a cliffhanger! We are hoping that this pi occurrence will be explained in Infinite Series 2.

  • @doodelay
    @doodelay 5 ปีที่แล้ว +4

    The series of comments in this thread converge on one conclusion and that is to Bring back PBS Infinite Series!

  • @hcsomething
    @hcsomething 5 ปีที่แล้ว

    Is the Harmonic Series the series with the smallest individual terms which still diverges? Or is there some series of terns S_n where 0.5^n < S_n < H_n where the sum of S_n diverges?

  • @austynhughes134
    @austynhughes134 5 ปีที่แล้ว

    Just another fantastic episode of Numerphile

  • @uvsvdu
    @uvsvdu 5 ปีที่แล้ว

    Charles Fefferman! I met him and his also very talented daughter last summer at an REU!

  • @chessandmathguy
    @chessandmathguy 5 ปีที่แล้ว

    I just love that the p series with a p of 2 converges to pi^2/6.

  • @zperk13
    @zperk13 5 ปีที่แล้ว +1

    3:36 he really does mean that. You have to get a denominator of 272,400,599 just to get past 20 (20.000000001618233)

  • @jonathanguzman8584
    @jonathanguzman8584 5 หลายเดือนก่อน

    thank you for this great video

  • @blogginbuggin
    @blogginbuggin 2 ปีที่แล้ว

    You've made Math fun. Thank you.

  • @Jixzl
    @Jixzl 5 ปีที่แล้ว +25

    I remember the anals of mathematics. My lecturer gave it to me last semester.

    • @akosbakonyi5749
      @akosbakonyi5749 5 ปีที่แล้ว +8

      I guess he had a long ruler, heh?

  • @solandge36
    @solandge36 5 ปีที่แล้ว

    This video creeped in when I was least expecting it.

  • @laszlosimo788
    @laszlosimo788 2 ปีที่แล้ว

    infinity is possibility (in - finity) in something, between something - there are possibilities to definition
    (expression) space for existence - defined

  • @Euquila
    @Euquila 5 ปีที่แล้ว +1

    The fact that PI creeps in means that infinite series can be re-cast into some 2-dimensional representation (since circles are 2-dimensional). In fact, 3Blue1Brown did a video on this

  • @mikeandrews9933
    @mikeandrews9933 5 ปีที่แล้ว

    My first encounter with the overhang question was from Martin Gardner’s “Mathematical Games” column of Scientific American. I used to do this all the time with large stacks of playing cards

  • @trelligan42
    @trelligan42 5 ปีที่แล้ว

    A phrase that illuminates the 'what does "sums to infinity" mean' is "grows without bound".

  • @robinc.6791
    @robinc.6791 5 ปีที่แล้ว +4

    Series was the hardest part of calc 2 :( but it makes sense now :)

  • @fearitselfpinball8912
    @fearitselfpinball8912 ปีที่แล้ว

    1 + 1/2 + 1/4 + 1/8…
    Every possible number in this series has the same two properties in common: A. It _diminishes_ the ‘gap’ (between the accumulating number and 2). B. It fails to close the gap between the accumulating number “2”.
    Since every possible number in the whole series is _incapable_ of closing the gap it diminishes, adding _all of the numbers_ (the ‘infinite sum’) does not involve adding any number which reaches 2. Achilles does not catch the Tortoise.
    Also, since the gap size (the distance between the accumulated number and 2) is the last number in the series (gap of 1/4 at 1+1/2+1/4) the accumulation of numbers can _never_ result in the closure of the gap.

  • @Ralesk
    @Ralesk 5 ปีที่แล้ว +3

    6:12 the lean isn't 1, 1/2, 1/3, ... but 1/2, 1/3, 1/4 and so on - doesn't change the end result (infinity minus one is still infinity), but the visualisation really bothered me there.

    • @ruroruro
      @ruroruro 5 ปีที่แล้ว +1

      Listen carefully to what he says.
      "The distances are in **proportions** 1, 1/2, ..."
      The listed numbers are proportions relative to the first overhang, not relative to the book length.
      The reason, he says it that way is because if you take the book length to be 1, the lengths of overhangs would be
      1/2, 1/4, 1/6, 1/8, 1/10, 1/12, ... (half of the harmonic series).

  • @bachirblackers7299
    @bachirblackers7299 4 ปีที่แล้ว

    Very smooth and lovely

  • @trevorallen3212
    @trevorallen3212 5 ปีที่แล้ว

    Planck length is the minimal level before quantum physics starts extremely affecting the space time itself in those infintismal scales... Dam you zeno you did it again!!

  • @charlesfort6602
    @charlesfort6602 5 ปีที่แล้ว

    So, if we add the surace area of a infinite series of squares, which sides lenght are the numbers of harmonic series, then we will get a finite surface area of pi^2/6, which also can be presented as a circle. (also the sum of their circuts will be infinite)

  • @lucbourhis3142
    @lucbourhis3142 5 ปีที่แล้ว

    The lower bound used to show the harmonic series diverge is a pleasant trick but it does not tell us how fast the series diverge: the sum of the first n terms goes as the logarithm of n. We can even go further: it goes like log n plus the Euler constant plus a term behaving as 1/n. But that requires methods beyond mere arithmetic.

  • @blitziam3585
    @blitziam3585 5 ปีที่แล้ว +1

    Very interesting, thank you! You earned a subscriber.

  • @XenoTravis
    @XenoTravis 5 ปีที่แล้ว +6

    Vsauce and Adam Savage did a cool video a while ago where they made a big harmonic stack

    • @ashcoates3168
      @ashcoates3168 5 ปีที่แล้ว +1

      Travis Hunt TH-cam PhD what’s the video called? I’m interested in it

    • @VitaliyCD
      @VitaliyCD 5 ปีที่แล้ว +3

      @@ashcoates3168 Leaning Tower of Lire

  • @eydeet914
    @eydeet914 5 ปีที่แล้ว +1

    Interesting new editing style and I believe theres lots of work behind it but I personally think I prefer the more static style. I was very distracted by all the wobbling (and the wrong kind of paper :D ).

  • @micheljannin1765
    @micheljannin1765 5 ปีที่แล้ว +22

    This vid felt like Déjà-vu

    • @MrCrashDavi
      @MrCrashDavi 5 ปีที่แล้ว +3

      VSAuce did it.
      We'll run out of edutainment before 2025, and there'll probably be mass suicides.

    • @mrnarason
      @mrnarason 5 ปีที่แล้ว

      Infinite series had been cover many times on this channel and others.

  • @lm58142
    @lm58142 ปีที่แล้ว

    The 1st infinite series mentioned corresponds to a different Zeno's paradox - that of dichotomy paradox.

  • @bobbysanchez6308
    @bobbysanchez6308 5 ปีที่แล้ว +2

    “And that’s one, thank you.”

  • @sander_bouwhuis
    @sander_bouwhuis 5 ปีที่แล้ว

    You stopped the video at the moment I thought it was getting interesting!

    • @jeffo9396
      @jeffo9396 5 ปีที่แล้ว

      It was interesting from the very beginning.

  • @XRyXRy
    @XRyXRy 5 ปีที่แล้ว

    Awesome, we're leaning about this in AP Calc!

  • @rintintin3622
    @rintintin3622 5 ปีที่แล้ว

    Surprising! Btw, I like your animations. Could you do a Numberphile-2 on how you make them?

  • @user-rd7jv4du1w
    @user-rd7jv4du1w 5 ปีที่แล้ว +265

    Naruto is an example of an infinite series

    • @noverdy
      @noverdy 5 ปีที่แล้ว +15

      More like graham's number of series

    • @tails183
      @tails183 5 ปีที่แล้ว +22

      Pokémon and One Piece lurk nearby.

    • @lowlize
      @lowlize 5 ปีที่แล้ว +6

      You mean Boruto's dad?

    • @NoNameAtAll2
      @NoNameAtAll2 5 ปีที่แล้ว +6

      Naruto ended
      Boruto began

    • @evanmurphy4850
      @evanmurphy4850 5 ปีที่แล้ว +1

      @@noverdy Graham's number is smaller than infinity...

  • @deblaze666
    @deblaze666 5 ปีที่แล้ว +14

    For a large enough values of a gazillion

  • @phyarth8082
    @phyarth8082 5 ปีที่แล้ว

    1/x converges in physics tasks (only technically converges), when you get unit hyperbola y=1/x, and in this case you get number pie and e constant, but technically converges because 1/x algebraic parameters is from (0, infinity) yeah you can not divide number by zero, yeah in physics always get reminder not equal to zero, but physics are not same as mathematics.

  • @emdash8944
    @emdash8944 5 ปีที่แล้ว

    Every math professor has their own word for a really big number.

  • @derfunkhaus
    @derfunkhaus 5 ปีที่แล้ว

    IMO it would be a more beautiful equation, instead of saying the series converges to pi squared over 6, to rearrange it to the square root of [(3!)(1+ 1/4 + 1/9 + 1/16 + 1/25...)] = pi. Then you've got a formula that, like the famous e^i*pi formula, incorporates several notable mathematical concepts including addition, fractions, square roots, and factorials. 3! is arguably the first non-trivial factorial, which makes that interesting. Or, you could just call it 6 and be satisfied that it is the least composite number with two distinct prime factors.

  • @WonderingBros
    @WonderingBros 5 ปีที่แล้ว

    Dear Numberphile could you make a series for beginners in mathematics or a video on how to be mathematician without college degree and tell us about references helping us achieving such a big Goal

  • @ffggddss
    @ffggddss 5 ปีที่แล้ว

    Some interesting variants of the harmonic series -
    The alternating harmonic series:
    1 - ½ + ⅓ - ¼ + ⅕ - ⅙ + - ... = ln(2)
    The alternating odd harmonic series:
    1 - ⅓ + ⅕ - ¹/₇ + - ... = ¼π
    Also, the 'tamed' harmonic series:
    1 + ½ + ⅓ + ¼ + ⅕ + ⅙ + ... + 1/n - ln(n) → γ = 0.5772156649... [as n→∞]
    But these deserve another video...
    Fred

    • @divergentmaths
      @divergentmaths 4 ปีที่แล้ว

      If you are interested to learn more about divergent series and want to understand why and how 1+2+3+4+5+6+... = -1/12,
      I recommend the online course “Introduction to Divergent Series of Integers” on the Thinkific online learning platform.

  • @thomasjakobsen2260
    @thomasjakobsen2260 5 ปีที่แล้ว +8

    The pi^2/6 comes from the Riemann Zeta function right?

    • @Arycke
      @Arycke 5 ปีที่แล้ว +9

      Yes and no. "Comes from" is vague. The problem where that result first appeared was called the Basel Problem posed about 80 years before Euler established a proof and about 200 years before Riemann published related results. It was then associated merely by Riemann's construction of his zeta function as it is of the form sum(1,inf, 1/n^s, Re(s)>1). Euler did more work generalizing the result 50 to 100 years before Riemann published his most iconic paper using Euler's work.

    • @randomdude9135
      @randomdude9135 5 ปีที่แล้ว

      I was also thinking that

    • @eugene7518
      @eugene7518 7 หลายเดือนก่อน

      Euler soved this problem first

    • @eugene7518
      @eugene7518 7 หลายเดือนก่อน

      He forgot to mention that the tortoise is also always moving forward

  • @ianmoore5502
    @ianmoore5502 5 ปีที่แล้ว

    It took me 2 seconds to fall in love with his voice. Reminds me of M. A. Hamelin.

  • @willb9159
    @willb9159 5 ปีที่แล้ว +1

    Could you possibly ask Ed Witten to talk on the channel; especially since he's a physicist with a Fields medal! He also lectures at Princeton, just like Prof. Fefferman.

    • @Arycke
      @Arycke 5 ปีที่แล้ว +2

      You would most likely see him on Sixty Symbols, Numberphile's physics-based sister channel.

  • @winkey1303
    @winkey1303 ปีที่แล้ว

    Thank you

  • @shiroshiro2183
    @shiroshiro2183 5 ปีที่แล้ว

    Brilliance of S. Ramanujan infinite series

  • @RobinSylveoff
    @RobinSylveoff 5 ปีที่แล้ว +5

    6:43 “for a large enough value of a gazillion”

  • @TemplerOO7
    @TemplerOO7 5 ปีที่แล้ว

    Interesting how slowly the harmonic series diverges. Is there a way to approximate the value of the sum for a given number of steps?

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 ปีที่แล้ว

      Yugo Betrugo The sequence of harmonic numbers increases logarithmically. It diverges because the limit of ln(n) as n increases indefinitely is infinite, meaning there is no limit.

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 ปีที่แล้ว

      Also, there is no closed form formula without using special functions, but using special functions defeats the obvious purpose of closed forms.

  • @Liphted
    @Liphted 5 ปีที่แล้ว

    I didn't know Peter Shiff had a number channel!!! This is great!

  • @cwaddle
    @cwaddle 5 ปีที่แล้ว +1

    You have had Villani, Tao, and now Fefferman. Would be amazing if you could manage to get Perelman on the show

  • @sooryabalanmurugesan4742
    @sooryabalanmurugesan4742 5 ปีที่แล้ว

    At 2:11, what he says is wrong:/
    If you take n=2, S=1.5
    n=10, S=2.929
    The same way when we go to higher numbers
    S keeps on increasing no matter what
    But not to a finite sum
    Thats why its infinity
    Not because if you take some big number
    Then the answer is bigger than that number
    This sum can never be bigger than the last term(when n is set of natural numbers)
    It will be equal if n=1

    • @bodhisattvaoflazyness
      @bodhisattvaoflazyness 5 ปีที่แล้ว

      What he says is entirely correct, and is basically the definition of not having a finite limit.

  • @divergentmaths
    @divergentmaths 4 ปีที่แล้ว

    If you are interested to learn more about divergent series and want to understand why and how 1+2+3+4+5+6+... = -1/12,
    I recommend the online course “Introduction to Divergent Series of Integers” on the Thinkific online learning platform.

  • @grovegreen123
    @grovegreen123 5 ปีที่แล้ว

    really like this guy

  • @mariovelez578
    @mariovelez578 5 ปีที่แล้ว

    now someone please tell me why 1/nln(n) diverges. we can show it diverges through an integral test.
    as a p-series, 1/n barely diverges, whereas 1/(n^1.000...1) converges. why does multiplying the bottom by ln(n), a function where the lim as n -> ∞ = ∞, still not make it converge.

  • @A.P.6179
    @A.P.6179 5 ปีที่แล้ว

    great video

  • @mauricereichert2804
    @mauricereichert2804 5 ปีที่แล้ว +2

    The square next to 1/20 is misplaced at 8:50 :P

    • @kevinhart4real
      @kevinhart4real 5 ปีที่แล้ว

      nice, didnt see that

    • @pmcpartlan
      @pmcpartlan 5 ปีที่แล้ว +1

      Well spotted! - I think that must have been the point where I realised how long it was going to take to finish...

  • @WindowsXP_YT
    @WindowsXP_YT 5 ปีที่แล้ว +1

    What about 1/3+1/9+1/27+1/81... and 1/9+1/81+1/729+1/6561...?

  • @Sicira
    @Sicira 5 ปีที่แล้ว +4

    6:51 that suspiciously looks like half of a parabola... is it?

    • @comma_thingy
      @comma_thingy 4 ปีที่แล้ว

      I might be a bit late, but no. It's the shape of the log curve (inverse of exponential) rather than the sqrt curve (inverse of a parabola)

  • @MrRyanroberson1
    @MrRyanroberson1 5 ปีที่แล้ว +1

    0:15, same as 9.9999... = 10, but in binary, no? also 7:30 "1 / 0.5" = 2, make sure to be careful.

  • @nikitabelousov5643
    @nikitabelousov5643 4 ปีที่แล้ว

    animation is a blast!

  • @johnmcclane4430
    @johnmcclane4430 5 ปีที่แล้ว

    Wait, if you took a larger amount of the series and took that as a half 1/4+1/9+1/16+1/25+1/36+1/49 wouldn't you get the same result as in the first series. I can imagine that a half would become drastically larger but it would be finite, right ?

    • @scepgineer
      @scepgineer 5 ปีที่แล้ว

      Yes, the series you describing is finite (converges).
      1/4 + 1/9 + 1/25 + 1/36 + 1/49 ... = sum 1/n^2, n=2 to infinity
      = 1/6 (π - 6)^2 ≈ 0.64
      The first series was
      1 + 1/2 + 1/4 + 1/8 ... = sum 1/2^n, n=0 to infinity
      = 2
      So if by "the same result" you mean they are both converging series and not that they are equal, then yes.

  • @davidwilkie9551
    @davidwilkie9551 5 ปีที่แล้ว

    It's a convenient way to illustrate the transverse Phys-Chem connection of modulated QM-Time Principle in the sum-of-all-histories form-ulae, all the incident points of view of the tangential Superspin big picture.., to show the temporal superposition logic of quantization...

  • @bradensorensen966
    @bradensorensen966 3 ปีที่แล้ว

    Summing squares of 1/x where x increments each squared value is well-known to have a relationship with pi, though.

  • @КимБадук
    @КимБадук 5 ปีที่แล้ว

    In the end I was so hyped to see the proof that the last series equals pi^2/6, but not this day)

  • @AdamDane
    @AdamDane 5 ปีที่แล้ว

    Pouring one out for PBS Infinite Series

  • @jxq2855
    @jxq2855 5 ปีที่แล้ว

    The harmonic series is infinite and xeno's series is finite. Contrasting them here has me wondering what series is the "point" that lies "between" an infinite and a finite sum. Which I know doesn't actually make sense or is well defined but is still interesting to kick around in my head.

    • @meghanto
      @meghanto 5 ปีที่แล้ว +2

      JXQ look up p-series

    • @jxq2855
      @jxq2855 5 ปีที่แล้ว

      @@meghanto Thanks!

  • @isuller
    @isuller 5 ปีที่แล้ว

    So, the infinite series of 1+(1/2)^n+(1/3)^n+(1/4)^n+... is divergent for n=1, but convergent for n=2. The million dollar question is: what's the maximum value for n to this series be divergent? We know for sure this value is between 1 and 2, but what could it be?

    • @waruuum
      @waruuum 5 ปีที่แล้ว +2

      It converges for all n > 1 but diverges for all n

    • @isuller
      @isuller 5 ปีที่แล้ว

      @@waruuum so actually 1 is the maximum and for any value above 1 the series is convergent? Wow, that's surprising to me...

    • @void9720
      @void9720 5 ปีที่แล้ว

      I think you’ll find that the million dollar question is: Are the only zeros of such a function where n=-2k, or where n=(1/2)+bi? (From what I understand)