Financial News Headline Sentiment Analysis (NLP) - Data Every Day

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ม.ค. 2025
  • Hi guys, welcome back to Data Every Day!
    On today's episode, we are looking at a dataset of financial news headlines and trying to predict the sentiment of a given headline. We will be using a TensorFlow RNN (GRU) to make our predictions.
    Here is a link to the Kaggle dataset:
    www.kaggle.com...
    And here is a link to my notebook from the video:
    www.kaggle.com...
    Thanks so much for watching! If you enjoyed today's episode, be sure to subscribe and hit the bell for more content!
    See you all tomorrow! :)
    ----------
    Patreon: / gcdatkin
    LinkedIn: / gcdatkin
    Twitter: / gcdatkin

ความคิดเห็น • 6

  • @sa12935
    @sa12935 ปีที่แล้ว

    I am getting : "NotImplementedError: Cannot convert a symbolic Tensor (gru_2/strided_slice:0) to a numpy array. This error may indicate that you're trying to pass a Tensor to a NumPy call, which is not supported "
    while running the traning code in jupyter notebook, please help

  • @rhubarb2301
    @rhubarb2301 2 ปีที่แล้ว

    great vid :)

  • @ayencoscolfield3312
    @ayencoscolfield3312 4 ปีที่แล้ว +1

    Awesome goodness

  • @neha-fp6kp
    @neha-fp6kp 3 ปีที่แล้ว

    is it supervised or unsupervised
    ?

    • @gcdatkin
      @gcdatkin  3 ปีที่แล้ว

      Supervised. Since we are given the sentiment labels along with the headlines, we are able to learn from how our predictions differ from the labels.

    • @neha-fp6kp
      @neha-fp6kp 3 ปีที่แล้ว

      @@gcdatkin thnks buddy