L04 Stress invariants, isotropic and deviatoric stress components, stress path

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 พ.ย. 2024

ความคิดเห็น • 11

  • @GauravMishra-hf1pg
    @GauravMishra-hf1pg ปีที่แล้ว +2

    Xcellent , superb explanation , total visualization. Thanks a lot Prof.

  • @sanjb109
    @sanjb109 3 ปีที่แล้ว +1

    Professor, u have so much understanding...better explanation....made us easy to understand

  • @siriuslot4708
    @siriuslot4708 3 ปีที่แล้ว +1

    Thank you so much Dr. Espinoza. I finally understand the principal, deviatoric, invarianst etc. Struggled with these concepts previously.

  • @joisleenramirez620
    @joisleenramirez620 3 ปีที่แล้ว +1

    Thank you so much professor. Finally, I can understand. Saludos desde Panamá

  • @estebanpatinomarin416
    @estebanpatinomarin416 ปีที่แล้ว +1

    Thank you so much Dr. Espinoza. Could you tell me in which book or article to find the physical interpretation of the third invariant?

    • @dnicolasespinoza5258
      @dnicolasespinoza5258  ปีที่แล้ว +1

      Great question Esteban! I had a feeling for what it meant but not quite until you asked and I solved the problem! Here it goes:
      The third invariant reduces to the determinant of the stress tensor, so when written in principal stresses
      I_3 = sigma_1*sigma_2*sigma_3
      Let's call D13 = sigma_1 - sigma_3 and D23 = sigma_2 - sigma_3, and use these D's (Mohr circle diameters) in the equation above.
      You get
      I_3 = D13*D23*sigma_3 + (D13+D23)*sigma_3 + sigma_3^3
      Hence, I_3 gives you an idea of the difference between sigma_1 and sigma_2 with sigma_3.
      For a compressional "polyaxial" state with sigma_1 != sigma_2 != sigma_3, I_3 is bound by the perfect triaxial extension case (sigma_1 = sigma_2 > sigma_3) and the perfect triaxial compression case (sigma_1 > sigma_2 = sigma_3) (See lectures on Mohr-Coulomb criterion with triaxial extension and compression), such that
      Triax ext bound: (sigma_1 - sigma_3)*sigma_3^2 + sigma_3^3 < I_3 < Triax comp bound: (sigma_1 - sigma_3)^2*sigma_3 + 2(sigma_1 - sigma_3)*sigma_3^2 + sigma_3^3.
      In summary, I_3 tell you how far you are in between triax compression and triax extension!
      Notice the I_3 = 0 would happen for plane-stress (sigma_3 = 0) or I_3

  • @luoxingling1980
    @luoxingling1980 2 ปีที่แล้ว +1

    Thank you so much for your lecture!

  • @cchrism.7586
    @cchrism.7586 10 หลายเดือนก่อน +1

    Wow!

  • @Prophetic_heirs
    @Prophetic_heirs 3 ปีที่แล้ว

    Thank you so much for this lecture!!

  • @prakharmishra3726
    @prakharmishra3726 ปีที่แล้ว

    Waiting for "better than my university professor" comments