How convolutional neural networks work, in depth

แชร์
ฝัง
  • เผยแพร่เมื่อ 13 ม.ค. 2025

ความคิดเห็น • 286

  • @Karim-nq1be
    @Karim-nq1be 9 หลายเดือนก่อน +13

    That's a masterpiece, not only have I learned how in detail convolutional neural networks work, but also I've learned how I should explain hard subjects to others. Thank you.

  • @danielcohen5311
    @danielcohen5311 ปีที่แล้ว +10

    This is by far the best video I've seen on CNN. Thanks a lot!

  • @bm5211
    @bm5211 3 ปีที่แล้ว +58

    I tend to get intimidated by videos longer than an hour, but I'm so incredibly glad I watched this one! Super clear explanation, I feel like I actually understand what happens now. No one else has been able to explain it so clearly. :) Thank you!!

    • @BrandonRohrer
      @BrandonRohrer  3 ปีที่แล้ว +7

      That's so good to hear. I'm really happy that it clicked.

    • @opto3539
      @opto3539 2 ปีที่แล้ว +2

      ​@@BrandonRohrer a little suggestion it would have been a lot better if it was a playlist consisting of 10 mins videos each, it would really be helpful for someone with low attention span like me

    • @BrandonRohrer
      @BrandonRohrer  2 ปีที่แล้ว +1

      @@opto3539 Thanks Opto, I like this suggestion. I tried this on some later content and I like the result.

  • @Omo_Mohd
    @Omo_Mohd ปีที่แล้ว +7

    Although it's 5 years ago, this is the simplest and the AWESOMEST video in youtube for someone getting started with Computer Vision.
    This lecture, along with 3-Blue 1-Brown neural network playlist, and you are good to explore
    Thank you!!

    • @BrandonRohrer
      @BrandonRohrer  ปีที่แล้ว +1

      That is a huge compliment. Thanks!

  • @pw7225
    @pw7225 6 ปีที่แล้ว +84

    You're an amazing teacher. Just the right speed. The right structure. Well done.

  • @djsosbxbdirndxnkcbebxhxbe
    @djsosbxbdirndxnkcbebxhxbe 5 หลายเดือนก่อน +1

    This is the BEST video explanation EVER! Animation, simplicity, voice, oh god, you deserve an award in the machine learning world!

    • @BrandonRohrer
      @BrandonRohrer  4 หลายเดือนก่อน

      Thanks :) Made my day

  • @lucianoinso
    @lucianoinso 11 หลายเดือนก่อน +1

    Don't let the duration of this video intimidate you from enjoying this masterpiece of a presentation, just press play and begin, you'll freaking love every second of it.
    Thank you so much for sharing this and so much other information for free!

  • @AbsolutelyNoOne251
    @AbsolutelyNoOne251 ปีที่แล้ว +6

    One of the best videos I’ve ever seen on the topic: super clear explanation + truly in depth, all without being boring. The only thing I didn’t understand is how to determine the values in the matrices for the convolution.

    • @BrandonRohrer
      @BrandonRohrer  ปีที่แล้ว +1

      Thank you Daniele!
      The short answer: they start random and get adjusted during training by backpropagation ( e2eml.school/backpropagation )
      The long answer: A two-course sequence walks through how to implement this in Python for 1-D ( e2eml.school/321 ) and 2-D ( e2eml.school/322 ) convolutional neural networks.

  • @XinhLe
    @XinhLe 5 ปีที่แล้ว +42

    Thanks so much for spending time preparing this videos.
    Watching is 1h, preparing for this video is probably * by 100 :)
    3:20 - Filtering
    8:10 - Pooling
    10:30 - Normalisation (ReLu)
    12:16 deep stacking
    13:11 fully connected layers
    17:00 receptive fields
    18:00 create a neuron, create weight and squash the results (sigmoid function).
    26:50 optimisation

    • @im-Anarchy
      @im-Anarchy ปีที่แล้ว +1

      and then he died

  • @StayTech-Rich
    @StayTech-Rich 10 หลายเดือนก่อน +2

    I had a diffi ultrasound time understanding the convolution layer, this course is the best among all courses I saw on TH-cam, keep the good work, you saved me , I was struggling understanding and now I'm completely clear. Thanks alot

  • @bahadryldrm6833
    @bahadryldrm6833 3 ปีที่แล้ว +3

    There is lecturer that knows about what he's teaching the students. Well explained thank you.

  • @fitnessismypassion
    @fitnessismypassion ปีที่แล้ว +2

    I am a visual learner with no background of computer science and this video is a gem! Thank you very much. Subscribed:)

    • @BrandonRohrer
      @BrandonRohrer  ปีที่แล้ว

      Thank you! I'm pleased to hear it.

  • @GamingShiiep
    @GamingShiiep ปีที่แล้ว +5

    I can't stress enough how great your videos and explanations are. I get overwhelmed by lots of text and missing visual examples, so it's great I found your videos. Watched 2 already and will definitely watch the rest too!

  • @lukas-hofer
    @lukas-hofer 10 หลายเดือนก่อน +2

    insanely good explanation, never seen anything like this. thanks a lot

  • @gk8644
    @gk8644 5 ปีที่แล้ว +25

    For those who come from the shorter video by Brandon, the new stuff starts at 15:13.

  • @ishwarmorey712
    @ishwarmorey712 4 ปีที่แล้ว +8

    Brandon, you explain the most difficult concepts in simple understandable language. Nice visualizations create a mind map which we cannot forget. Thank you for all your efforts on these videos!

  • @ShopperPlug
    @ShopperPlug 2 ปีที่แล้ว +1

    This is by far the best explanation in convolution neural networks, gets into theory and details of things. The presentation of everything is superb. I now know precisely what CNN are exactly all about. I would never spend a full hour watching an explanation on youtube unless it is a full course. This explanation hour long of CNN is well worth it. Thanks.

  • @Artelion-pk2he
    @Artelion-pk2he 7 หลายเดือนก่อน

    Probably, one of the best intuitive explainers of why we like to use gradient descent in neural networks, which I ever seen.

  • @thomassouthern807
    @thomassouthern807 3 หลายเดือนก่อน +1

    This is the first video of yours I have watched. It was so good that I subscribed to your channel.
    BYW, your voice is a lot like Brian Greene. This is good because it is a good lecture and documentary voice.

    • @BrandonRohrer
      @BrandonRohrer  3 หลายเดือนก่อน

      Thanks thomas, those are huge compliments. I'm really happy it was helpful.

  • @ayushkumarsingh8020
    @ayushkumarsingh8020 3 ปีที่แล้ว +1

    this is the only explanation in youtube and the internet, that has finally helped to quench my thirst of understanding CNN!

  • @kaypakaipa8559
    @kaypakaipa8559 4 ปีที่แล้ว +1

    Wow, i this tutorial is packed with information. I had to rewind a 100times to grasp the art about weights & errors, nobody ever explains this part for mere mortals like myself.

    • @BrandonRohrer
      @BrandonRohrer  4 ปีที่แล้ว

      Thanks! I'm really happy to hear it.

  • @handokosupeno5425
    @handokosupeno5425 ปีที่แล้ว +1

    Your explanation is amazing, from your video i can understand neural network. Thanks

  • @khuebner
    @khuebner 7 หลายเดือนก่อน +2

    Great presentation, Brandon. I prefer your simple graphics and pace over the highly distracting, animated videos from other educators.

    • @BrandonRohrer
      @BrandonRohrer  7 หลายเดือนก่อน

      Thanks! I appreciate that

  • @yemanerussom9462
    @yemanerussom9462 ปีที่แล้ว +1

    You are simply the best at explaining this complex topic. Thank you.

  • @pafingl
    @pafingl 11 หลายเดือนก่อน

    Marvelous explanation, made simple and concise, yet not oversimplified to a level that would render it pointless. I could not have imagined a better way to bring the loose pieces in my head together. Thanks a lot for this.

  • @CrazyMentor94
    @CrazyMentor94 ปีที่แล้ว +1

    one of the best videos about this topic I have ever watched. It is 1 in a thousand! Thank you for sharing it

  • @samirana8931
    @samirana8931 4 ปีที่แล้ว +1

    First time replying to any tutorial in 7 years, You really know how to make others understand, Would love o work with you if I get a chance ever.

  • @3rdman99
    @3rdman99 ปีที่แล้ว

    I'm so glad to finally find the videos about NN explained by somebody whose English I can understand.

  • @HackBoy678
    @HackBoy678 ปีที่แล้ว +1

    I'm only halfway through but really, you're amazing at teaching and explaining concepts. Thank you

  • @ivaniliev93
    @ivaniliev93 5 ปีที่แล้ว +7

    This is the best video I have ever watched about machine learning. You have more than just a talent.

  • @raibek-the-coder
    @raibek-the-coder ปีที่แล้ว +1

    I can't imagine how hard it was to make this cool video! Many thanks to the author!

  • @Matlockization
    @Matlockization 5 ปีที่แล้ว

    It was nice of you to simplify the understanding as most TH-cam video's just put neural networks in an entertaining way with a vague explanation.

  • @tranpaul4550
    @tranpaul4550 5 ปีที่แล้ว

    Just 10 mins into the video, I got a clear overall picture of CNN that I have searched for weeks. Thanks Brandon.

  • @_tnk_
    @_tnk_ 6 ปีที่แล้ว +4

    Detailed and concise at the same time. Perfect video.

  • @UdemmyUdemmy
    @UdemmyUdemmy ปีที่แล้ว +1

    A one hour well spent.,,in my Life...

  •  5 ปีที่แล้ว +5

    Wow! All your perfect presentations combined in a better presentation! I'm bookmarking this one and also sharing it with my colleagues.

  • @patecwariatec1
    @patecwariatec1 3 ปีที่แล้ว +25

    Explanation is on point!!!

  • @prebpreben6328
    @prebpreben6328 6 ปีที่แล้ว +4

    Very intuitive way of explaining Convolution Neural Networks. Great job!

  • @XiaomeiHan
    @XiaomeiHan 6 หลายเดือนก่อน

    This really make me understand CNN more intuitively, lucky to meet with your vedio😄

  • @ramalingeswararaobhavaraju5813
    @ramalingeswararaobhavaraju5813 5 ปีที่แล้ว +1

    thank you so much Mr.Brandon Rohrer sir for your good teaching on convolutional neural networks.

  • @joy-sm5sl
    @joy-sm5sl 2 ปีที่แล้ว +1

    thank you so much for your explanation. really helps me to understand what CNN is about

  • @linuxbrad
    @linuxbrad ปีที่แล้ว

    Very clearly spoken and illustrated. It's great to have well articulate and easy to follow tutorials like this.

  • @DPortal17
    @DPortal17 3 ปีที่แล้ว +1

    THANK YOU THANK YOU THANK YOU. Finally I understood what Convolutional NN is. Great vid bro.

  • @AkshajBunny
    @AkshajBunny 2 ปีที่แล้ว

    Thank you so much! I didn't have to pause once to understand anything. You explained it so perfectly.

  • @muhtasirimran
    @muhtasirimran 2 ปีที่แล้ว +1

    This is the video I needed the most. Thank you

  • @yasmenwahba9447
    @yasmenwahba9447 3 ปีที่แล้ว

    WoW! This is by far the best tutorial out there for CNNs! Thank you...

  • @colinwilliams3459
    @colinwilliams3459 4 ปีที่แล้ว +5

    Jesus this was a fantastic tutorial I imagine you spent many months working on!

  • @rafa_br34
    @rafa_br34 6 หลายเดือนก่อน

    Awesome! I just didn't expect you to actually talk about backpropagation and linear layers but I'm not complaining.

  • @RAMYASCSE
    @RAMYASCSE 3 ปีที่แล้ว +1

    Super Sir. Finally I got what I have expected.

  • @dark_gamer4550
    @dark_gamer4550 2 ปีที่แล้ว

    Best explanation of how Neural Networks work I have watched so far! Well explained and really intuitive

  • @berhanet
    @berhanet 4 ปีที่แล้ว

    Best explanation of backpropagation I've seen fr. Thank you SO much!

    • @BrandonRohrer
      @BrandonRohrer  4 ปีที่แล้ว

      Thank you Berhane! I appreciate it.

  • @rne1223
    @rne1223 4 ปีที่แล้ว

    I'm going to create a new account just to give this man two thumbs up. This lecture is soooo good.

  • @nagarjunavarikoti8160
    @nagarjunavarikoti8160 4 ปีที่แล้ว

    Super! Crisp clear explanation with breaking down complex concepts into easily understandable steps.

  • @sjdcknsn
    @sjdcknsn 2 ปีที่แล้ว +1

    Really good explanations. Just the right level of detail for my understanding. Thanks.

  • @sophiafunworldatthepark6740
    @sophiafunworldatthepark6740 11 หลายเดือนก่อน +1

    Very good tutorial. Learn so many things

  • @shyboy2113
    @shyboy2113 3 ปีที่แล้ว +1

    Amazing dear...help alot to understand the foundation....👌

  • @vctorroferz
    @vctorroferz 4 ปีที่แล้ว +1

    An incredible Video !! thanks brandon for such a good explanation to understand CNN. please don´t stop making more material . Greetings from Germany

    • @BrandonRohrer
      @BrandonRohrer  4 ปีที่แล้ว

      Thank you Victor! I appreciate it.

  • @edmirkovac
    @edmirkovac 3 ปีที่แล้ว

    Brandon beside knowledge also has nice narrative ability, for me definitely best 1 hour of time spent...

  • @leeamraa
    @leeamraa 4 ปีที่แล้ว +1

    Underrated video! views should be at least E6.

  • @muhammad.sanwal
    @muhammad.sanwal 3 ปีที่แล้ว +1

    @brandonrohrer sir in 14:27, are we evaluating the final confidence scores by taking the average of either x or o scores?

    • @BrandonRohrer
      @BrandonRohrer  3 ปีที่แล้ว

      In this simplified example yes, but just a heads up that in practice it's often done just like the other layers - summing up all the inputs and passing them through an activation function, such as the logistic function.

  • @omkarmpanicker
    @omkarmpanicker 3 ปีที่แล้ว +1

    Perfect !!!
    Such a great video .
    Thanks a lot Brandon

  • @SarahKchannel
    @SarahKchannel 3 ปีที่แล้ว +1

    Great teachings !1h of Brandon = 15h of Stanford lectures....

    • @BrandonRohrer
      @BrandonRohrer  3 ปีที่แล้ว

      Thank you so much SarahK

    • @SarahKchannel
      @SarahKchannel 3 ปีที่แล้ว +1

      @@BrandonRohrer I would thank you much more for your efforts, you examples makes the subject so much easier digestible !

  • @Pomegrante-b1m
    @Pomegrante-b1m 2 ปีที่แล้ว

    Fantastic video. The conclusion really summed up everything nicely.

  • @InsaneBodyMexico
    @InsaneBodyMexico 3 ปีที่แล้ว +1

    Great work. Thank you so much. This has been the most useful video i have seen in NN!

  • @rahimsoleymanpour3868
    @rahimsoleymanpour3868 3 ปีที่แล้ว +1

    What a great tutorial. Easily the best on CNN.

  • @ys2937
    @ys2937 3 ปีที่แล้ว

    Wow, the explanation is easy to be understand. Thanks for your work. it helps me a lot

  • @hackercop
    @hackercop 3 ปีที่แล้ว

    Sir, just finished watching and you explained this very well especially the second half with gradient descent and backpropagation. Thank you so much, have liked and Subscribed!

  • @anonymousperson9757
    @anonymousperson9757 2 ปีที่แล้ว

    Thank you for this amazing video! It definitely helped clear a lot of stuff about CNNs for me. On a very random note, you have a great voice! I feel like you'd make an awesome audiobook narrator!

    • @BrandonRohrer
      @BrandonRohrer  2 ปีที่แล้ว

      Aw thanks! That's a really nice ting to say.

  • @skaterope
    @skaterope 4 ปีที่แล้ว +1

    quite good explanation Brandon !
    Now i feel like sending CV to Tesla

  • @ajitmohanraj
    @ajitmohanraj 4 ปีที่แล้ว +1

    Beautifully explained Brandon and so clear - thank you !

  • @cw9249
    @cw9249 2 ปีที่แล้ว +1

    i loved your detailed explanation of the steps, but can you please make another video to explain the REASON for each of the steps in detail?

    • @BrandonRohrer
      @BrandonRohrer  2 ปีที่แล้ว

      Thanks! If you want to go one level deeper, I recommend walking through e2eml.school/321 and e2eml.school/322 . They walk through the Python implementation and give a deeper understanding of how and why.

  • @pikachu-rk8sp
    @pikachu-rk8sp 4 ปีที่แล้ว

    Thanks a lot !! You are one of the best teachers ever!!

  • @abubakryagob
    @abubakryagob ปีที่แล้ว +1

    Man, thank you so much!
    This is incredible work!

  • @os-channel
    @os-channel 4 หลายเดือนก่อน +1

    Master piece!
    One question: Is convolution the same or a kind of filtering?

    • @BrandonRohrer
      @BrandonRohrer  4 หลายเดือนก่อน +1

      Thanks! Here's a bit more on convolution that might help clarify: th-cam.com/video/B-M5q51U8SM/w-d-xo.html
      And if you want to go really deep , there are courses here: end-to-end-machine-learning.teachable.com/p/321-convolutional-neural-networks
      and here: end-to-end-machine-learning.teachable.com/p/322-convolutional-neural-networks-in-two-dimensions/

  • @khonghengo
    @khonghengo 4 ปีที่แล้ว

    OMG, you are an amazing teacher. Thank you a million times

  • @elnaghy
    @elnaghy ปีที่แล้ว

    in 22:09 ,, the last layer, bottom right node, i think the 4 pixels need to be inverted to black is top, white is bottom... i am right?

  • @prajwalchauhan6440
    @prajwalchauhan6440 3 ปีที่แล้ว +1

    amazing explanation with great examples

  • @brendanj.gifford1059
    @brendanj.gifford1059 5 ปีที่แล้ว +1

    Wow! Very well done :) Perfect pace, content, and explanations.

  • @mohammadamindadgar7766
    @mohammadamindadgar7766 3 ปีที่แล้ว +2

    That was AWESOME. The minor issue was, there was no pointer. ( We could skip the issue with the great explanation)

    • @BrandonRohrer
      @BrandonRohrer  3 ปีที่แล้ว

      Many thanks :) And I agree. After this video I changed my workflow so that I could record a pointer too.

  • @leoramirez130
    @leoramirez130 2 ปีที่แล้ว

    Wow !!!! Great tutorial, my knowledge expanded 10 fold

  • @lordcarl3374
    @lordcarl3374 5 ปีที่แล้ว

    Magnificently explained sir, well done.

  • @darkprofessor
    @darkprofessor 4 ปีที่แล้ว +1

    Thank you. I was in need for such a video. Well done.

  • @imranhussain-iy8xi
    @imranhussain-iy8xi 6 หลายเดือนก่อน

    The interaction with the audience feels so personal.

  • @DArnez-c5n
    @DArnez-c5n ปีที่แล้ว

    This is what a tutorial video should be!

  • @saianishmalla2646
    @saianishmalla2646 4 ปีที่แล้ว +1

    I've learnt so much from these videos thanks a lot!!

  • @ndongayamimuteweri964
    @ndongayamimuteweri964 2 ปีที่แล้ว +1

    I dont usually comment on youtube videos. All i can say is that you Sir!!!

  • @artmusic6937
    @artmusic6937 4 ปีที่แล้ว

    one question @57:43 Convolutional Neuronal Networks can also be applied to 1D data for example audio right? It isnt necessary to convert the data to look like an image?! or i dont get it right. I mean if i have an array [1,2,3,4,5,6,7,8] i can apply 1D Convolutions on it .

    • @BrandonRohrer
      @BrandonRohrer  4 ปีที่แล้ว +1

      You are right! 1D convolutions are not as common, but totally a thing. I'm just completing a course on building one from scratch in python to categorize electrocardiograms: e2eml.school/321 .

    • @artmusic6937
      @artmusic6937 4 ปีที่แล้ว

      @@BrandonRohrer nice, i will check this course! keep doing the great work!

  • @vudong6116
    @vudong6116 4 ปีที่แล้ว

    Great teacher! Big thank for your sharing to every body!

  • @dani-bx9zg
    @dani-bx9zg 4 ปีที่แล้ว

    The best explanation I ever heard !!!!

  • @brun301
    @brun301 2 ปีที่แล้ว

    This is such a clear explanation, thank you!!

  • @chandrahaasvemula7251
    @chandrahaasvemula7251 10 หลายเดือนก่อน

    its clear till 17:57 , but i just lost it at 18:01, just didnt understand why each lines there changed from 1.0 to -0.2 , 0.0 , 0.8 , -0.5.......can someone explain ?

  • @naageshk1256
    @naageshk1256 5 หลายเดือนก่อน +1

    Excellent . Thank you soooooooooooooooooooooooooooooooooooooooo much !😊😊😊

    • @BrandonRohrer
      @BrandonRohrer  5 หลายเดือนก่อน

      You are so very welcome :)

  • @tim40gabby25
    @tim40gabby25 5 ปีที่แล้ว +5

    22:15 is wrong, the bottom of the 4 outputs is 'upside down'.. great video, though

  • @rahelemt4613
    @rahelemt4613 3 ปีที่แล้ว

    Hi. Thanks for the great video. Just that in 22:20, I believe the last receptive field is wrongly visualized.

  • @MrGovannan
    @MrGovannan 3 ปีที่แล้ว

    It would have been nice to see the in-depth breakdown of convolution layers instead of regular neural network starting at 15:00. Does pieces of the image take the place of the pixels?

  • @ahmedidris305
    @ahmedidris305 4 ปีที่แล้ว

    Thank you Sir for this crystal clear explanation

  • @xaverbirrer3793
    @xaverbirrer3793 5 ปีที่แล้ว

    Outstanding, many thanks for this educative video

  • @julieirwin3288
    @julieirwin3288 3 ปีที่แล้ว +1

    This is great! Thank you Brandon.

  • @MayankKumar-nn7lk
    @MayankKumar-nn7lk 4 ปีที่แล้ว

    Sigmoid gives output between 0 and 1, I think the graph shown at 19:42 is of tanh

  • @RahulKrishnan
    @RahulKrishnan 3 ปีที่แล้ว +1

    Thank you, it gave great clarity.