An Exponential Equation In Two Variables | Real Solutions?

แชร์
ฝัง
  • เผยแพร่เมื่อ 17 ธ.ค. 2024

ความคิดเห็น • 8

  • @spelunkerd
    @spelunkerd วันที่ผ่านมา +2

    What an interesting approach. it made me pause when you made the creative assumption that Y and X are linearly related. That assumption gives a clear solution to the first problem, but does that method exclude other reasonable solutions, too? After all, what if X and Y are instead exponentially related, or related by a quadratic? Is it fair to assume linearity?

  • @MohammedRasheed-d8m
    @MohammedRasheed-d8m 18 ชั่วโมงที่ผ่านมา

    graphing the equation in Desmos does not give the same graph as the one you have included in your video. why so?

    • @alexandermorozov2248
      @alexandermorozov2248 15 ชั่วโมงที่ผ่านมา

      Yes, I also got completely different graphs if I build the functions x(k) and y(k).

    • @alexandermorozov2248
      @alexandermorozov2248 13 ชั่วโมงที่ผ่านมา

      P. S. This is a graph defined parametrically - in the form of x(t) and y(t). The graph has two branches - the lower one (t from 0 to 2) and the upper one (t from 2 to infinity).

  • @Don-Ensley
    @Don-Ensley 12 ชั่วโมงที่ผ่านมา

    problem
    xʸ = y ²ˣ
    In the real world, y could be a complicated function of x. But for simplicity's sake assume y is a linear multiple of x.
    y = kx
    , where k ∈ ℝ.
    xᵏˣ = (kx) ²ˣ
    x = 0 gives the solution
    1 = 1
    since 0⁰ = 1. Therefore x = y = 0 is a solution corresponding to the parametric point x = 0 for any k valu.
    Assume x ≠ 0 since x = 0 is a solution.
    Take lns.
    (k x) ln x = 2x ( ln k + ln x )
    x ≠ 0, so divide by x.
    k ln x = 2( ln k + ln x )
    Solve for x.
    (k -2) ln x = 2 ln k
    As long as k ≠ 2,
    ln x = 2 ln k / (k-2)
    Parametric curve with parameter k not 2:
    x = k²ᐟ⁽ᵏ⁻²⁾
    y = kx = k ᵏᐟ⁽ᵏ⁻²⁾
    There is a discontinuity problem at k = 0.
    Then
    x = 0, y = 0 by y = kx
    But we have
    y = k ᵏᐟ⁽ᵏ⁻²⁾ = 1 = 0⁰.
    y can't be 1 and 0 simultaneously.
    Therefore k ≠ 0.
    answer
    (x, y) ∈ { ( k²ᐟ⁽ᵏ⁻²⁾, k ᵏᐟ⁽ᵏ⁻²⁾), (k ≠ 0, 2, k ∈ ℝ) }

    • @lausunmei2961
      @lausunmei2961 3 ชั่วโมงที่ผ่านมา

      0^0 is undefined and NOT equal to 0

    • @Don-Ensley
      @Don-Ensley 3 ชั่วโมงที่ผ่านมา

      @ i thought it was 1.

    • @Don-Ensley
      @Don-Ensley 2 ชั่วโมงที่ผ่านมา

      @ I didn't say it was 0. I said it is 1.