Introductory Fluid Mechanics L3 p5: Defining a Streamline

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 ม.ค. 2025

ความคิดเห็น • 13

  • @finianholland7654
    @finianholland7654 4 ปีที่แล้ว +1

    The equation being drawn at 5:44. I am confused as to why it makes sense.

    • @beoptimistic5853
      @beoptimistic5853 4 ปีที่แล้ว

      th-cam.com/video/XPCgGT9BlrQ/w-d-xo.html 💐💐💐💐

  • @hawraaraheem2449
    @hawraaraheem2449 2 ปีที่แล้ว +1

    Why u substitute c(y) in c(x) not reverse

  • @angelar9480
    @angelar9480 6 ปีที่แล้ว

    solid explanation, now I get it

  • @143mathematics
    @143mathematics 3 ปีที่แล้ว

    thank you so much sir,your video is really help me to understanding the basic of fluids mechanics. subscribed

  • @nordgothica
    @nordgothica 5 ปีที่แล้ว +1

    Hi, why is the equation of the streamline equal to a constant? (See 10:05) Thanks.

    • @sukruthrajesh2378
      @sukruthrajesh2378 4 ปีที่แล้ว +1

      That constant is for C(x) which is obtained upon integration. In this case, C(x) is some arbitrary constant and not a function of x

    • @richardaversa7128
      @richardaversa7128 4 ปีที่แล้ว +1

      The other reply is mistaken about where exactly that constant comes from. When solving an exact differential equation in the "total differential" form, (stuff) = df, you automatically also have df=0. So when you find f(x,y,z) from the first equation (the "total differential"), you also have f(x,y,z)=C by integrating the second equation (df=0). The point is, the streamline expression is equal to a constant because all solutions to exact differential equations resulting from integrating a total differential pop out as a function equal to a constant.

  • @danalex2991
    @danalex2991 8 ปีที่แล้ว +1

    More videos please

    • @chaosui3169
      @chaosui3169 8 ปีที่แล้ว +1

      people.ucalgary.ca/~hugo/WEBPAGES/fluid%20mechanics/fluidmech_lecture_list.html#head2
      available there :)

  • @pranavmohan20
    @pranavmohan20 4 ปีที่แล้ว

    In the example, v=2xy. Besides that, great lecture!

    • @ronhugo6225
      @ronhugo6225  4 ปีที่แล้ว

      Thank you for watching. For the stream function, the v-component of velocity is v = - partial psi / partial x. With the computed stream function this gives v=-2xy. Unlike computing velocity from the potential function, computing the v-component of velocity from the stream function introduces a minus sign.

    • @pranavmohan20
      @pranavmohan20 4 ปีที่แล้ว

      @@ronhugo6225 Thank you for the clarification.