The Illustrated Word2vec - A Gentle Intro to Word Embeddings in Machine Learning

แชร์
ฝัง
  • เผยแพร่เมื่อ 22 ม.ค. 2025

ความคิดเห็น • 24

  • @debbs_io
    @debbs_io 9 หลายเดือนก่อน +1

    I’ve watched a lot of videos on TH-cam. So many with animations etc. I nearly lost hope thinking I would never be able to grasp this concept. This is the only one that truly explains what the word embedding is and how it’s being derived in just a simple manner. Thank you so much

  • @bazgo-od7yj
    @bazgo-od7yj 5 หลายเดือนก่อน +2

    thank you for saying that bit about word2vec being outdated. a coworker was lobbying to use it for one of our projects and this helped nip that in the bud.

  • @andrestellez84
    @andrestellez84 2 ปีที่แล้ว +1

    Thanks for these videos and your blog, I've learned so much from you. I always read your blog entries before dive in the original paper.

  • @MannyBernabe
    @MannyBernabe 11 หลายเดือนก่อน

    Personality scores is a great example!

  • @priyam66
    @priyam66 ปีที่แล้ว +7

    One unsolicited piece of advice. You got a profound knowledge of AI. You should share this knowledge by making more videos on several AI topics. I hope every AI aspirant gets a chance to watch your videos.
    Keep it up..:)

  • @nelsonpullella9977
    @nelsonpullella9977 2 ปีที่แล้ว

    Great job! I enjoy very much your channel and blog! THK!

  • @RoccoSwat
    @RoccoSwat 2 ปีที่แล้ว

    This guy is the best. He is a good guy.

  • @sakaar-lok9109
    @sakaar-lok9109 2 ปีที่แล้ว

    You are great, please never stop

  • @ruikang8022
    @ruikang8022 7 หลายเดือนก่อน

    Thank you. Not related but I really want to know, what font are you using in your blog poster?

  • @bagamanocnon
    @bagamanocnon ปีที่แล้ว

    jay, how does training LLMs differ from training text embedding models? or is an embedding model a byproduct of training an LLM? Like in transformers where text are converted to embeddings first before being fed to to the transformer blocks. Thanks!

  • @abdikadermohamed5288
    @abdikadermohamed5288 2 ปีที่แล้ว

    Thank u so much its great Explanation clear understand

  • @aristotlesocrates8409
    @aristotlesocrates8409 หลายเดือนก่อน

    Excellent

  • @lemoniall6553
    @lemoniall6553 2 ปีที่แล้ว

    Very good explaination, one more thing, is word2vec using dimensional reduction too?, we can choose 50,100,200 dimensions? but how it works? Thanks

  • @KarthickDurai-f3h
    @KarthickDurai-f3h 20 ชั่วโมงที่ผ่านมา

    the goat

  • @ArunNegi-fi8di
    @ArunNegi-fi8di 4 หลายเดือนก่อน

    finally found the video, if you haven't watched then this is the one .

  • @sershsershsersh
    @sershsershsersh ปีที่แล้ว +1

    3:32 "...Jay is 38 on the 0 to 100 scale... so -.4 on the -1 to 1 scale...": How is that? I get -.24. If it's -.4 on the -1 to 1 scale, that's 30 on the 0 to 100 scale. Please fix my math.

    • @TheCallToAdventure
      @TheCallToAdventure ปีที่แล้ว

      That’s what was bothering me too

    • @AmarendraMahapatra
      @AmarendraMahapatra ปีที่แล้ว

      i agree.. I thought to it as well

    • @marcussu767
      @marcussu767 3 หลายเดือนก่อน

      I think your math is right, I got -0.24 too.

  • @Shubham-su7sm
    @Shubham-su7sm ปีที่แล้ว +1

    Yoo Flying Beast!!

  • @xudongguo-z9u
    @xudongguo-z9u ปีที่แล้ว

    why are the person turning big and turning small all the time through the video?

  • @Udayanverma
    @Udayanverma ปีที่แล้ว +1

    instead of explaining you went scrolling pages'. it was better if you have just kept it short and may be make other vid for subsequent sections.