Coding a Transformer from scratch on PyTorch, with full explanation, training and inference.

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ธ.ค. 2024

ความคิดเห็น • 386

  • @comedyman4896
    @comedyman4896 ปีที่แล้ว +145

    personally, I find that seeing someone actually code something from scratch is the best way to get a basic understanding

    • @zhilinwang6303
      @zhilinwang6303 11 หลายเดือนก่อน +1

      indeed

    • @馬桂群
      @馬桂群 11 หลายเดือนก่อน

      indeed

    • @CM-mo7mv
      @CM-mo7mv 9 หลายเดือนก่อน

      i don't need to see someone typing... but you might also enjoy watching the gras grow or paint dry

    • @FireFly969
      @FireFly969 8 หลายเดือนก่อน +3

      Yeah, and you see how these technologies works.
      It's insane, that in the end it looks easy that you can do something that companies of millions and billions of dollars do. In a small way but the same idea at the end.

    • @AtomicPixels
      @AtomicPixels 7 หลายเดือนก่อน

      Yeah kinda ironic how that works. The simplest stuff required the most complex explanations

  • @physicswithbilalasmatullah
    @physicswithbilalasmatullah 8 หลายเดือนก่อน +53

    Hi Umar. I am a first year student at MIT who wants to do AI startups. Your explanation and comments during coding were really helpful. After spending about 10 hours on the video, I walk away with great learnings and great inspiration. Thank you so much, you are an amazing teacher!

    • @umarjamilai
      @umarjamilai  8 หลายเดือนก่อน +3

      Best of luck with your studies and thank you for your support!

    • @shauryaomar5090
      @shauryaomar5090 3 หลายเดือนก่อน +1

      I am a 3rd semester student at IIT Roorkee. I am also interested in AI startups.

  • @umarjamilai
    @umarjamilai  ปีที่แล้ว +167

    The full code is available on GitHub: github.com/hkproj/pytorch-transformer
    It also includes a Colab Notebook so you can train the model directly on Colab.
    Of course nobody reinvents the wheel, so I have watched many resources about the transformer to learn how to code it. All of the code is written by me from zero except for the code to visualize the attention, which I have taken from the Harvard NLP group article about the Transformer.
    I highly recommend all of you to do the same: watch my video and try to code your own version of the Transformer... that's the best way to learn it.
    Another suggestion I can give is to download my git repo, run it on your computer while debugging the training and inference line by line, while trying to guess the tensor size at each step. This will make sure you understand all the operations. Plus, if some operation was not clear to you, you can just watch the variables in real time to understand the shapes involved.
    Have a wonderful day!

    • @AiEdgar
      @AiEdgar ปีที่แล้ว +1

      The best video ever

    • @odyssey0167
      @odyssey0167 ปีที่แล้ว

      Can you provide with the pretrained models?

    • @wilfredomartel7781
      @wilfredomartel7781 9 หลายเดือนก่อน

      🎉is this Bert architecture?

    • @sachinmohanty4577
      @sachinmohanty4577 4 หลายเดือนก่อน

      @@wilfredomartel7781 Its complete encoder- decoder based model, bert is the encoder part of this encoder-decoder model

    • @dan_pal
      @dan_pal 19 วันที่ผ่านมา

      I love you bro

  • @yangrichard7874
    @yangrichard7874 ปีที่แล้ว +45

    Greeting from China! I am PhD student focused on AI study. Your video really helped me a lot. Thank you so much and hope you enjoy your life in China.

    • @umarjamilai
      @umarjamilai  ปีที่แล้ว +2

      谢谢你!我们在领英联系吧

    • @germangonzalez3063
      @germangonzalez3063 4 หลายเดือนก่อน +1

      I am also a Ph.D. student. This video is valuable. Many thanks!

  • @akaskmsskssk6927
    @akaskmsskssk6927 วันที่ผ่านมา

    One random afternoon last year I decided to watch the whole video, and now I have my own LLM with 1B parameter with your code. Thank you so much. Don't ever stop inspring new ai programmers! Greetings from Philippines.

  • @linyang9536
    @linyang9536 ปีที่แล้ว +11

    这是我见过最详细的从零创建Transformer模型的视频,从代码实现到数据处理,再到可视化,up主真是嚼碎磨细了讲,感谢!

    • @decarteao
      @decarteao 10 หลายเดือนก่อน

      Nn entendi nada! Mas botei meu like.

    • @astrolillo
      @astrolillo 9 หลายเดือนก่อน +1

      @@decarteaoO cara da China e muito engracado con o video

  • @ArslanmZahid
    @ArslanmZahid ปีที่แล้ว +28

    I have browsed TH-cam for the perfect set of videos on transformer, but your set of videos (the video explanation you did on the transformer architecture) and this one is by far the best !! Take a bow brother, you have really contributed to the viewers in amount you cant even imagine. Really appreciate this !!!

  • @MuhammadArshad
    @MuhammadArshad ปีที่แล้ว +16

    Thank God, it's not one of those 'ML in 5 lines of Python code' or 'learn AI in 5 minutes'. Thank you. I can not imagine how much time you must have spent on making this tutorial. thank you so much. I have watched it three times already and wrote the code while watching the second time (with a lot of typos :D).

  • @kozer1986
    @kozer1986 ปีที่แล้ว +8

    I'm not sure if it is because I have study this content 1000000 times or not, but is the first time that I understood the code, and feel confident about it. Thanks!

  • @jerrysmith3593
    @jerrysmith3593 หลายเดือนก่อน +3

    老哥你救了我啊, 我是中科大的一名研究生,看你的视频,不仅学习了深度学习,还练习了我的英语听力 😁

    • @umarjamilai
      @umarjamilai  หลายเดือนก่อน +1

      不客气! 我最近会发新视频, stay tuned!

  • @ghabcdef
    @ghabcdef 10 หลายเดือนก่อน +4

    Thanks a ton for making this video and all your other videos. Incredibly useful.

    • @umarjamilai
      @umarjamilai  10 หลายเดือนก่อน

      Thanks for your support!

  • @faiyazahmad2869
    @faiyazahmad2869 5 หลายเดือนก่อน +5

    One of the best tutorial to understand and implement the Transformer model...Thank you for making such a wonderful video

  • @abdullahahsan3859
    @abdullahahsan3859 ปีที่แล้ว +27

    Keep doing what you are doing. I really appreciate you taking out so much time to spread such knowledge for free. Been studying transformers for a long time but never have I understood it so well. The theoretical explanation in the other video combined with this practical implementation, just splendid. Will be going through your other tutorials as well. I know how much time taking it is to produce such high level content and all I can really say is that I really am grateful for what you are doing and hope that you continue doing it. Wish you a great day!

    • @umarjamilai
      @umarjamilai  ปีที่แล้ว +3

      Thank you for your kind words. I wish you a wonderful day and success for your journey in deep learning!

  • @mittcooper
    @mittcooper 2 หลายเดือนก่อน +5

    Hi Umar. Absolutely amazing 🤯. Your clear breakdown and explanation of the concepts and code is just next level. Until I watched your video I had a very tentative handle on transformers. After watching I have a much better fundamental grasp of EVERY component. I can't say thank you enough. Please keep doing what you are doing.

    • @SAIFALI-rn5cs
      @SAIFALI-rn5cs 16 วันที่ผ่านมา

      Do professor in MIT won't teach like this?

  • @andybhat5988
    @andybhat5988 5 หลายเดือนก่อน +2

    Thanks for a great video.

  • @zhengwang1402
    @zhengwang1402 ปีที่แล้ว +2

    This feels really fantastic when looking someone write a program from bottom up

  • @mikehoops
    @mikehoops ปีที่แล้ว +2

    Just to repeat what everyone else is saying here - many thanks for an amazing explanation! Looking forward to more of your videos.

  • @manishsharma2211
    @manishsharma2211 ปีที่แล้ว +2

    WOW WOW WOW, though it was a bit tough for me to understand it, I was able to understand around 80 % of the code, beautiful. Thank you soo much

  • @SaltyYagi
    @SaltyYagi 4 หลายเดือนก่อน +2

    I really appreciate your efforts. The explanations are very clear. This is a great service for people that wish to learn the future of AI! All the best from Spain!

  • @aiden3085
    @aiden3085 ปีที่แล้ว +4

    Thank you Umar for our extraordinary excellent work! Best transformer tutorial ever I have seen!

  • @abdulkarimasif6457
    @abdulkarimasif6457 ปีที่แล้ว +6

    Dear Umar, your video is full of knowledge; thanks for sharing.

  • @JohnSmith-he5xg
    @JohnSmith-he5xg ปีที่แล้ว +7

    Loving this video (only 13 minutes in), really like you using type hints, commenting, descriptive variable names, etc. Way better coding practices than most of the ML code I've looked at.
    At 13:00, for the 2nd arg of the array indexing, you could just do ":" and it would be identical.

    • @tonyt1343
      @tonyt1343 ปีที่แล้ว +2

      Thank you for this comment! I'm coding along with this video and I wasn't sure if my understanding was correct. I'm glad someone else was thinking the same thing. Just to be clear, I am VERY THANKFUL for this video and am in no way complaining. I just wanted to make sure I understand because I want to fully internalize this information.

  • @raviparihar3298
    @raviparihar3298 6 หลายเดือนก่อน +2

    best video I have ever seen on whole youtube eon transformer model. Thank you so much sir!

  • @goldentime11
    @goldentime11 7 หลายเดือนก่อน +1

    Thanks for your detailed tutorial. Learned a lot!

  • @bosepukur
    @bosepukur 26 วันที่ผ่านมา +1

    this is an incredible contribution to the topic

  • @dengbuqi
    @dengbuqi 8 หลายเดือนก่อน +1

    What a WONDERFUL example of transformer! I am Chinese and I am doing my PhD program in Korea. My research is also about AI. This video helps me a lot. Thank you!
    BTW, your Chinese is very good!😁😁

  • @sagarpadhiyar3666
    @sagarpadhiyar3666 7 หลายเดือนก่อน +1

    Best video I came across for transformer from scratch.

  • @maxmustermann1066
    @maxmustermann1066 ปีที่แล้ว +4

    This video is incredible, never understood it like this before. I will watch your next videos for sure, thank you so much!

  • @SaiManojPrakhya-mp4oe
    @SaiManojPrakhya-mp4oe 5 หลายเดือนก่อน

    Dear Umar - thank you so much for this amazing and very clear explanation. It has deeply helped me and many others in understanding the theoretical and practical implementation of transformers! Take a bow!

  • @balajip5030
    @balajip5030 ปีที่แล้ว +2

    Thanks Bro. With your explanation, I am able to build the transformer model for my application. You explained so awesome. Please do what you are doing.

  • @shresthsomya7419
    @shresthsomya7419 10 หลายเดือนก่อน +2

    Thanks a lot for such a detailed video. Your videos on transformer are best.

  • @ZhenjiaoDu
    @ZhenjiaoDu 10 หลายเดือนก่อน

    Really helpful video. I watched it many times. Hope you enjoy your life in China. 龙年大吉

    • @umarjamilai
      @umarjamilai  10 หลายเดือนก่อน +1

      谢谢老板的精准扶贫

  • @terryliu3635
    @terryliu3635 6 หลายเดือนก่อน +1

    I learnt a lot from following the steps out of this video and create a transformer myself step by step!! Thank you!!

  • @saziedhassan3976
    @saziedhassan3976 ปีที่แล้ว +2

    Thank you so much for taking the time to code and explain the transformer model in such detail. You are amazing and please do a series on how transformers can be used for time series anomaly detection and forecasting!

  • @forresthu6204
    @forresthu6204 ปีที่แล้ว +1

    At 22:39, it describes the essentials of self-attentions computation in very clear and easy to understand way.

  • @VishnuVardhan-sx6bq
    @VishnuVardhan-sx6bq ปีที่แล้ว +1

    This is such a great work, I don't really know how to thank you but this is an amazing explanation of an advanced topic such as transformer.

  • @californiaBala
    @californiaBala 3 หลายเดือนก่อน

    This is the best one; we need to train a model; let the model observe your actions; and learn from you. With a physical structure, Tesla robot, could take classes based on your training.

  • @solomonhan2235
    @solomonhan2235 2 หลายเดือนก่อน +3

    Note: this implementation follows 'pre-LN' version of transformer -- which is slightly different from the original transformer in residual connection part. In the original block diagram, the layer normalization(LN) should be applied AFTER multi-head attention / feed-forward network. However, this code applies the LN BEFORE multi-head attention and feed-forward network. You can see the difference by comparing the ResidualConnection forward() code and section 3.2 of original "Attention Is All You Need" paper. This is a valid architecture too (proposed by the other papers), but it is not exactly as proposed in the original one.

    • @ashishkannad3021
      @ashishkannad3021 หลายเดือนก่อน

      here LN is applied after residual, which is basically merging multi-head attention / feed-forward network with original input. What u r saying is incorrect

  • @PP-qi9vn
    @PP-qi9vn ปีที่แล้ว +1

    Thanks!

  • @tonyt1343
    @tonyt1343 ปีที่แล้ว +1

    Thanks!

  • @codevacaphe3763
    @codevacaphe3763 6 หลายเดือนก่อน +1

    Hi, I just happen to see your video. It's really amazing, your channel is so good with valuable information. Hope, you keep this up because I really love your contents.

  • @si0n4ra
    @si0n4ra ปีที่แล้ว +1

    Umar, thank you for the amazing example and clear explanation of all your steps and actions.

    • @umarjamilai
      @umarjamilai  ปีที่แล้ว

      Thank you for watching my video and your kind words! Subscribe for more videos coming soon!

    • @si0n4ra
      @si0n4ra ปีที่แล้ว

      @@umarjamilai , mission completed 😎.
      Already subscribed.
      All the best, Umar

  • @ansonlau7040
    @ansonlau7040 9 หลายเดือนก่อน +1

    Big thankyou for the video, makes transformer so easy to learn(also the explanation video)👍👍

  • @mohamednabil374
    @mohamednabil374 ปีที่แล้ว +5

    Thanks Umar for this comprehensive tutorial, after watching many videos I would say, this is AWESOME! It would be really nice if you can provide us with more tutorials on Transformers especially training them for longer sequences. :)

    • @umarjamilai
      @umarjamilai  ปีที่แล้ว +1

      Hi mohamednabil374, stay tuned for my next video on the LongNet, a new transformer architecture that can scale up to 1 billion tokens.

  • @shakewingo3216
    @shakewingo3216 ปีที่แล้ว +2

    Thanks for making it so easy to understand. I definitely learn a lot and gain much more confidence from this!

  • @skirazai7591
    @skirazai7591 ปีที่แล้ว +2

    Great video, you are insanely talented btw.

  • @Patrick-wn6uj
    @Patrick-wn6uj 9 หลายเดือนก่อน +1

    Hi Umar thank you for all the work you are doing, please consider making a video like this on vision transformers

  • @dapostop7384
    @dapostop7384 7 หลายเดือนก่อน +1

    Wow super usefull! Coding really helps me understand the process better than visuals.

  • @salmagamal5676
    @salmagamal5676 11 หลายเดือนก่อน +1

    I can't possibly thank you enough for this incredibly informative video

  • @CathyLiu-d4k
    @CathyLiu-d4k ปีที่แล้ว +1

    Really great explanation to understand Transformer, many thanks to you.

  • @TheAwedExplorer
    @TheAwedExplorer 2 หลายเดือนก่อน +1

    Great Explanation. Thanks👍

  • @angelinakoval8360
    @angelinakoval8360 ปีที่แล้ว +1

    Dear Umar, thank you so so much for the video! I don't have much experience in deep learning, but your explanations are so clear and detailed I understood almost everything 😄. It wil be a great help for me at my work. Wish you all the best! ❤

    • @umarjamilai
      @umarjamilai  ปีที่แล้ว

      Thank you for your kind words, @angelinakoval8360!

  • @michaelscheinfeild9768
    @michaelscheinfeild9768 ปีที่แล้ว

    Im enjoying clear explanation of The Transformer Coding !

  • @lyte69
    @lyte69 ปีที่แล้ว +1

    Hey there! I enjoyed watching that video, you did a wonderful job explaining everything, and I found it super easy to follow along. Overall, it was a really great experience!

  • @JohnSmith-he5xg
    @JohnSmith-he5xg ปีที่แล้ว +1

    OMG. And you also note Matrix shapes in comments! Beautiful. I actually know the shapes without having to trace some variable backwards.

  • @gunnvant
    @gunnvant ปีที่แล้ว +1

    This was really good. I understood multihead attention better with the code explanation.

  • @jihyunkim4315
    @jihyunkim4315 ปีที่แล้ว +1

    perfect video!! Thank you so much. I always wonder the detail code and its explanation and now I almost understand all of it. thanks:) you are the best for me!

  • @prajolshrestha9686
    @prajolshrestha9686 ปีที่แล้ว +1

    I appreciate you for this explanation. Great video!

  • @OleksandrAkimenko
    @OleksandrAkimenko ปีที่แล้ว +1

    You are a great professional, thanks a ton for this

  • @DatabaseAdministration
    @DatabaseAdministration 10 หลายเดือนก่อน

    You are one of the coolest dude in this area. It'd be helpful if you provide a roadmap to reach your expertise. I'd really love to learn from you but i can't understand. Roadmap will help so many of your subscribers.

  • @ChathikaGunaratne
    @ChathikaGunaratne 5 หลายเดือนก่อน +1

    Amazingly useful video. Thank you.

  • @nhutminh1552
    @nhutminh1552 ปีที่แล้ว +1

    Thank you admin. Your video is great. It helps me understand. Thank you very much.

  • @Mostafa-cv8jc
    @Mostafa-cv8jc ปีที่แล้ว +1

    Very good video. Tysm for making this, you are making a difference

  • @phanindraparashar8930
    @phanindraparashar8930 ปีที่แล้ว +10

    It is really amazing video. I tried understanding the code of it from various other youtube channel; but was always getting confused. Thanks a lot :) . Can you make a series on BERT & GPT aswell; where you build these models and train on custom data?

    • @umarjamilai
      @umarjamilai  ปีที่แล้ว +21

      Hi Phanindra! I'll definetely continue making more videos. It takes a lot of time and patience to make just one video, not considering the preparation time to study the model, write the code and test it. Please share the channel and subscribe, that's the biggest motivation to continue providing high quality content to you all.

    • @rubelahmed5458
      @rubelahmed5458 ปีที่แล้ว

      A coding example for BERT would be great!@@umarjamilai

  • @keflat23
    @keflat23 ปีที่แล้ว +1

    what to say.. just WOW! thank you so much !!

  • @jeremyregamey495
    @jeremyregamey495 ปีที่แล้ว +1

    I love your videos. Thank you for sharing your knowledge and i cant wait to learn more.

  • @ZhenjiaoDu
    @ZhenjiaoDu 9 หลายเดือนก่อน +1

    in the 13:13/2:59:23, when we build the PositionalEncoding function,
    this line x = x + (self.pe[:,:x.shape[1],:]).requires_grad_(False), the x.shape[1] looks like not be used in the transformer model, because when we build the dataset.py function, we pad all the sentences into the same length, and then we load the (batch, seq_len, input_embedding_dim) into the PositionalEncoding function, where all x.shape[1] in the batch is the seq_len, instead of varying by their original sentence length.

    • @mittcooper
      @mittcooper 2 หลายเดือนก่อน

      @umarjamilai. I have the same question. x.shape[1] in this case will alway equal seq_len. So every time this will just return the entire pe tensor. Wondering if this is unique to this use case example??

  • @texwiller7577
    @texwiller7577 8 หลายเดือนก่อน +1

    Dottore...sei un grande!

  • @ashishkannad3021
    @ashishkannad3021 หลายเดือนก่อน +1

    Mashallah what a video. U r an inspiration

  • @godswillanosike896
    @godswillanosike896 8 หลายเดือนก่อน +1

    Great explanation! Thanks very much

  • @MpJoJo
    @MpJoJo 9 หลายเดือนก่อน

    谢谢!

    • @umarjamilai
      @umarjamilai  9 หลายเดือนก่อน

      谢谢老板的精准扶贫🧧

  • @MrSupron00
    @MrSupron00 ปีที่แล้ว

    This is excellent! Thank you for putting this together. I do have one point of confusion with how the final multihead attention concatenation takes place. I believe the concatenation takes place on line 110 where V' = (V1, V2,.. Vh) (sequenc_length, h*dk) This is intended to be multiplied by matrix W0 (h*dk, dmodel) to give something of shape (sequenc_length, dmodel ) as is required. However, here you implement a linear layer operation which takes the concat V' (sequence_length, d_model) and is fed into a linear layer constructed so that we do the following: W*V'+b where the dimension of W and b are chose to satisfy the output dimension. This is different from multiplying directly with a predefined trainable matrix of size W0. Now, I can see how these are nearly the same thing and in practice it may not matter, but it would be helpful to point out these tricks of the trade so folks like myself don't get bogged down with these subtleties. Thanks

  • @divyanshbansal2321
    @divyanshbansal2321 10 หลายเดือนก่อน +1

    Thank you mate. You are a godsend!

  • @toxicbisht4344
    @toxicbisht4344 11 หลายเดือนก่อน +1

    Amazing explanation
    Thank you for this

  • @Hdjandbkwk
    @Hdjandbkwk ปีที่แล้ว +2

    Just want to say thank you!! This is easily one of my favorite video on TH-cam! I have watched a few videos on transformers but none explained it as clear as you, at first I was scared by the length of the video but you managed to have my attention for the full 3 hours! Following your instructions I am now able to train my very first transformer!
    Btw, I am using the tokenizer the way you are but looking at the tokenizer file it looks like my tokenizer didn’t split the sentences into words and it is using the whole sentence as token. Do you have any idea why? I am using mac if that matters.

    • @umarjamilai
      @umarjamilai  ปีที่แล้ว +1

      Hi! Thanks for your kind words! Make sure your PreTokenizer is the "Whitespace" one and that the Tokenizer is the "WordLevel" tokenizer. As a last resort, you can clone the repository from my GitHub and compare my code with yours. Have a wonderful rest of the day!

    • @Hdjandbkwk
      @Hdjandbkwk ปีที่แล้ว

      I have PreTokenizer set as whitespace and using WordLevel tokenizer and trainer but it will still encode the sentence as a whole. I did a direct swap to use BPE tokenizer and that is correctly encoding the sentences, maybe there is bug in WordLevel tokenizer for macOS.
      Another question that I have is what determines the max context size for LLMs? Is it the d_model size?@@umarjamilai

  • @AdityaAgarwal-v3b
    @AdityaAgarwal-v3b ปีที่แล้ว +1

    one of the best videos thanks a lot for the video.

  • @SyntharaPrime
    @SyntharaPrime ปีที่แล้ว +1

    Great Job. Amazing. Thanks a lot. I really appreciate you. It is so much effort.

  • @user-ul2mw6fu2e
    @user-ul2mw6fu2e ปีที่แล้ว +1

    Wow Your explanation amazing

  • @123Handbuch
    @123Handbuch 2 หลายเดือนก่อน +2

    ATTENTION: You don't need torchtext anymore, it's deprecated. Just remove the line "import torchtext.datasets as datasets" and install "pip install datasets"

  • @cbr250-p6v
    @cbr250-p6v 20 วันที่ผ่านมา +1

    At 1:01:17 i see that you have used the final softmax to get the output probabilities but i cannot seem to find that in your github repo code?

    • @umarjamilai
      @umarjamilai  20 วันที่ผ่านมา

      I removed it because the softmax is already applied by the CrossEntropyLoss

  • @AmishaHSomaiya
    @AmishaHSomaiya 7 หลายเดือนก่อน +1

    Thank you very much, this is very useful.

  • @neelarahimi1053
    @neelarahimi1053 3 หลายเดือนก่อน +1

    Great video! Thanks :)

  • @oborderies
    @oborderies ปีที่แล้ว +2

    Sincere congratulations for this fine and very useful tutorial ! Much appreciated 👏🏻

  • @coc2912
    @coc2912 ปีที่แล้ว +1

    Thanks for your video and code.

  • @DiegoSilva-dv9uf
    @DiegoSilva-dv9uf 11 หลายเดือนก่อน

    Valeu!

    • @umarjamilai
      @umarjamilai  11 หลายเดือนก่อน

      Grazie grazie grazie!

  • @lounes9777
    @lounes9777 หลายเดือนก่อน +1

    thank you for the effort !

  • @michaelscheinfeild9768
    @michaelscheinfeild9768 ปีที่แล้ว

    i enjoyed the video ! now i can transform the world !

  • @LeoDaLionEdits
    @LeoDaLionEdits 7 หลายเดือนก่อน +1

    thank you so much for these videos

  • @cicerochen313
    @cicerochen313 ปีที่แล้ว +2

    Awesome! Highly appreciate. 超級讚!非常的感謝。

  • @ageofkz
    @ageofkz 10 หลายเดือนก่อน +2

    At 29:14, the part on multihead attention, we feed each Q,V, K multiply by Wq, Wv, Wk then split them into n heads then dot product and concat them again. But should we not split them first, then apply Wq_h where Wq_h is the weight matrix for the hth query matrix, same for V and K? Because it seems like we just split them, apply attention, then concat?

  • @pawanmoon
    @pawanmoon ปีที่แล้ว +1

    Great work!!

  • @shengjiadiao3166
    @shengjiadiao3166 5 หลายเดือนก่อน +1

    the contents are crazy !!!!

  • @babaka1850
    @babaka1850 7 หลายเดือนก่อน

    for determining the max len of tgt sentence, I believe you should point to tokenizer_tgt rather than tokenizer_src. tgt_ids = tokenizer_tgt.encode(item['transaltion'][config['ang_tgt']]).ids

  • @sypen1
    @sypen1 ปีที่แล้ว +1

    Mate you are a beast!

  • @sypen1
    @sypen1 ปีที่แล้ว +1

    This is amazing thank you 🙏

  • @albert4392
    @albert4392 ปีที่แล้ว +1

    This is an excellent video, your explanation is so clear and the live coding helps understanding!
    Can you give us tips to debug such an huge model? Because it is really hard to make sure the model works well.
    My tips on debugging is to print out the shape of the tensor in each step, but this only make sure the shape is correct, there may be some logical error I may miss out. Thank you!

    • @umarjamilai
      @umarjamilai  ปีที่แล้ว +2

      Hi! I'd love to give a golden rule for debugging models, but unfortunately, it depends highly on the architecture/loss/data itself.
      One thing that you can do is, before training the model on a big dataset, it is recommended to train it on a very small dataset to make sure everything is working and the model should overfit on the small dataset. For example, if instead of training on many books, you train a LLM on a single book, hopefully it should be able to write sentences from that book, given a prompt.
      The second most important thing is to validate the model as the training is proceeding to verify that the quality is improving over time.
      Last but not least, use metrics to decide if the model is going in the right direction and make experiments on hyper parameters to verify assumptions, do not just make assumptions without validating them. When you have a model with billions of parameters, it is difficult to predict patterns, so every assumption must be verified experimentally.
      Have a nice day!

  • @majidwasiqi4031
    @majidwasiqi4031 ปีที่แล้ว +2

    Great video. Been watching for 12 hours now. My heads about to explode. Think I lost all the attention.

  • @user-wr4yl7tx3w
    @user-wr4yl7tx3w ปีที่แล้ว

    the code is really well written. very easy and nicely organized.

  • @AyushRaj-nt3ot
    @AyushRaj-nt3ot 6 หลายเดือนก่อน +1

    sir, your explanation is just beyond awesome!!! Thank you so much for creating such content. Sir I didn't get the residual connections part. As I am from India, I was working on Indic Languages, so i had to make more code but that's just okay. I just want if you could please help in understanding beam search code, the one which you also gave in the GitHub File. Also, if you could give the code for evaluating the BLEU Score. I'll be really grateful to you.
    And again, thank you so much for such a comprehensive content. We'd love to see your more videos especially in Generative AI!
    P.S. : I didn't understand how you wrote it, what I've understood is that we have to take the input of the previous layer and then add with o/p of the same layer and then apply layer norm on that. Basically Add and then LayerNorm. Please help me correct mysefl!

  • @bhuvandwarasila
    @bhuvandwarasila 2 หลายเดือนก่อน

    I believe I’m going to have to code and understand all the code to be able to replicate this for other use case! At the moment I am not able to follow the code as I am new to python! Im going to stick to this and understand this no matter how long it takes! I really did want to get into the visual transformer video, but I believe I should master this first!