Complete GenAI in 5 hours For Free 🔥 | RAG System Course

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 ธ.ค. 2024

ความคิดเห็น • 22

  • @AyushSinghSh
    @AyushSinghSh  16 ชั่วโมงที่ผ่านมา +1

    Make production grade systems or scale it via Self-host or try Timescale Cloud for free here: github.com/timescale/pgai

  • @AnkitYadav-dm7fp
    @AnkitYadav-dm7fp 16 ชั่วโมงที่ผ่านมา +3

    ❤👍 just now thought of learning GenAI and here it is

  • @user-gz6yn2sl6q
    @user-gz6yn2sl6q 15 ชั่วโมงที่ผ่านมา +2

    It's true, from last 2 weeks I working to train llm model for conversation chat bot, but the training model is simple 10 minutes code, but it won't work as expected

    • @AyushSinghSh
      @AyushSinghSh  15 ชั่วโมงที่ผ่านมา

      Glad to hear it :)

  • @NitinVerma_234
    @NitinVerma_234 15 ชั่วโมงที่ผ่านมา +1

    what i have to learn first ML or Gen AI or Python

    • @AyushSinghSh
      @AyushSinghSh  14 ชั่วโมงที่ผ่านมา

      Start with genai basics :) see where you’re at

  • @Afzal3000
    @Afzal3000 15 ชั่วโมงที่ผ่านมา

    Real Ayush is back💥✨

    • @AyushSinghSh
      @AyushSinghSh  15 ชั่วโมงที่ผ่านมา

      YESS

  • @vedanshbindal1121
    @vedanshbindal1121 12 ชั่วโมงที่ผ่านมา

    Hi, I’m 25 years old and currently working as a Java backend developer with nearly 3 years of experience. I’m looking to transition into the field of AI development, specifically focusing on generative AI technologies. My goal is to build generative AI applications that solve real-world problems and create impactful solutions.
    That’s how I came across your TH-cam channel! I really admire your work, and I was hoping you could provide some guidance. From a career perspective, how should I begin this transition into AI and generative AI development?
    Your advice would mean a lot to me, and I’d be truly grateful for your help!

    • @bishwajeet_b_das
      @bishwajeet_b_das 12 ชั่วโมงที่ผ่านมา +1

      Firstly Learn the Basic Mathematics(Linear algebra, calcus, statistics & probability ), Python(Your Java knowledge will help to transistion into different programming) because it has AI library(numpy, pandas and sckitlearn) to easy your hectic work, ML concept and understand the math behind in each of the concepts, DL algorithms and undertand the usecase of each algorithms, error reducing and validation.
      This is basic concept to move into GEN AI.
      then you can explore different LLM models, NLP, transformer etc....
      Statistical and Mathematical Foundations
      Probability and Statistics
      - Descriptive and inferential statistics
      - Probability distributions (Normal, Poisson, Binomial)
      - Hypothesis testing
      - Confidence intervals
      - Central Limit Theorem
      - Bayesian vs. Frequentist approach
      - A/B testing methodology
      Mathematics
      - Linear Algebra
      - Matrix operations
      - Eigenvectors and eigenvalues
      - Vector spaces
      - Calculus
      - Derivatives and gradients
      - Optimization techniques
      - Gradient Descent
      - Regularization techniques
      Machine Learning Algorithms:
      Supervised Learning
      - Linear Regression
      - Logistic Regression
      - Decision Trees
      - Random Forests
      - Gradient Boosting (XGBoost, LightGBM)
      - Support Vector Machines (SVM)
      - K-Nearest Neighbors (KNN)
      Unsupervised Learning
      - K-Means Clustering
      - Hierarchical Clustering
      - Principal Component Analysis (PCA)
      - t-SNE
      - DBSCAN
      Deep Learning
      - Neural Network architectures
      - Convolutional Neural Networks (CNN)
      - Recurrent Neural Networks (RNN)
      - Long Short-Term Memory (LSTM)
      - Transformer models
      - Basics of TensorFlow & PyTorch
      Python Programming Skills:
      Core Python:
      - Data structures (lists, dictionaries, sets)
      - List comprehensions
      - Lambda functions
      - Decorators
      - Error handling
      Data Science in Python:
      - NumPy
      - Array operations
      - Vectorization
      - Pandas
      - Data manipulation
      - Groupby operations
      - Merging and joining datasets
      - Scikit-learn
      - Model training and evaluation
      - Preprocessing techniques
      - Pipeline creation
      - Matplotlib & Seaborn for data visualization
      Practical Interview Preparation Tips:
      1. Build a strong portfolio on GitHub
      2. Practice coding on LeetCode and HackerRank
      3. Participate in Kaggle competitions
      4. Understand the business context of your models
      5. Practice explaining complex concepts simply
      6. Be prepared to discuss model selection, bias-variance tradeoff, and model evaluation metrics
      Key Interview Topics to Master:
      - Feature engineering
      - Model evaluation (precision, recall, F1-score)
      - Overfitting and underfitting
      - Cross-validation techniques
      - Handling imbalanced datasets
      - Model interpretability
      - Basic software engineering principles for data scientists

    • @Md_areef_uddin
      @Md_areef_uddin 4 ชั่วโมงที่ผ่านมา

      i want a referal to join as a python developer so can anyone help me in this situation

  • @pranavmittal9619
    @pranavmittal9619 11 ชั่วโมงที่ผ่านมา

    Companies Asking Masters and Research Publications what to do for that as belonging from decent college get easily the job of avg 12lpa ????

  • @LegendJonny-bq6td
    @LegendJonny-bq6td 16 ชั่วโมงที่ผ่านมา +1

    Bro, you once said writing three line of code in jupyter is not ML. Can you please explain a bit

    • @AyushSinghSh
      @AyushSinghSh  16 ชั่วโมงที่ผ่านมา

      Yep, ML is more about making something work with explainable approach and it doesn't make sense if we just write it off within 3 lines of code. Consider checking out my course on Core ML on youtube for free.

    • @LegendJonny-bq6td
      @LegendJonny-bq6td 16 ชั่วโมงที่ผ่านมา +1

      @AyushSinghSh so what should I actually do, because everywhere they do train() fit() and done.
      Btw, I am 13 years(learned python, libraries,linear algebra, probability and statistics,will learn ML next) just like you. And many people say that getting ML job as a fresher is not possible, then how did you get one

  • @pranavmittal9619
    @pranavmittal9619 10 ชั่วโมงที่ผ่านมา

    these 5 hours is worth it

    • @AyushSinghSh
      @AyushSinghSh  5 ชั่วโมงที่ผ่านมา

      ❤️❤️

  • @monkemon307
    @monkemon307 14 ชั่วโมงที่ผ่านมา

    bro wherewrer you

  • @Anonymus-ef7gu
    @Anonymus-ef7gu 15 ชั่วโมงที่ผ่านมา

    When will you bring a course in hindi ?

    • @AyushSinghSh
      @AyushSinghSh  14 ชั่วโมงที่ผ่านมา

      Soon

  • @gurumurthy4096
    @gurumurthy4096 16 ชั่วโมงที่ผ่านมา +1

    💥✨