Making Magnesium Metal

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ก.ย. 2024
  • Next on our list of metals to extract by molten salt electrolysis is magnesium, so this video marks a (relatively successful) attempt at making the metal from its chloride.
    We have a couple of unique hurdles to overcome with this reactive metal extraction, and some odd results observed in the end.
    You can check out the other molten salt electrolysis videos here:
    • Molten Salt Electrolysis

ความคิดเห็น • 122

  • @christopherleubner6633
    @christopherleubner6633 8 หลายเดือนก่อน +24

    Mix the MgCl2 and KCl togther in a ball mill. Add a small amount of silica sand to it as well. Melt down. Continue heating to bright red heat in a steel can. Next use a graphite rod as the anode. 7 to 15A is about right for a soup can container. The magnesium will sink to the bottom of the can. The high temperature also prevents formation of an alloy of k and mg.❤

  • @DeliciousDeBlair
    @DeliciousDeBlair 8 หลายเดือนก่อน +12

    Not a super long time ago, I found out that there are rocks in my area that are extremely magnesium rich, which I hope to eventually separate from the rocks and convert into custom castable alloys.

  • @philouzlouis2042
    @philouzlouis2042 7 หลายเดือนก่อน +3

    Hi Scrap Science,
    Nice video and encouraging results.
    Magnesium dust or sponge can be quite reactive with air or water.
    Dust can be pyrophoric and may lead to a FAE while opening the drum.
    Jus like Al, with water, Mg reacts and it can be accelerated by warm water (sometimes due to self warming).
    Mg + H2O --> H2(g) + MgO(s)
    MgO + H2O --> Mg(OH)2(s)
    Some water gels of Al (and probably Mg too) can be actuated by primers and H2O2 mixes are devastating.
    Magnesium rods are used to reach very high temperature underwater because it reacts with water to produce MgO that burns hot and bright underwater generating H2 gas arround.
    When trowing the molten metal and MgCl2 onto rusted iron...it may decompose a bit the Mg metal due to "magneto-thermic" reaction, Mg is very close to aluminium and it is thus reducing metal but more reactive than Al.
    3Mg + Fe2O3 --> 3MgO + 2Fe
    Reagards,
    PHZ
    (PHILOU Zrealone from the Science Madness forum)

  • @THYZOID
    @THYZOID 8 หลายเดือนก่อน +2

    Great idea. Happy that you managed to pull it off

  • @Polkem1
    @Polkem1 8 หลายเดือนก่อน +3

    always a good day when scrap science uploads !!

  • @ZoonCrypticon
    @ZoonCrypticon 8 หลายเดือนก่อน +8

    @6:15 perhaps you could use a small fine-meshed steel sieve for the electrode put deeply inside the molten salts (and saving it from oxygen and CO2 and CO, that may have reduced the yield ?). Could you coalesce the metal chunks under a borax layer ?

  • @GarryBoyer
    @GarryBoyer 7 หลายเดือนก่อน +2

    I think one of the problems is, once the molten metal falls, it's then falling on the anode and thus is in an oxidizing environment. Maybe put an insulator, like a silicate dish, on the bottom of the graphite crucible to collect the liquid metal?

    • @GarryBoyer
      @GarryBoyer 5 หลายเดือนก่อน

      ....looking at this I have no idea what I was thinking. Magnesium would react with a silicate dish to pull out the elemental silicon....

  • @sschmachtel8963
    @sschmachtel8963 8 หลายเดือนก่อน +4

    8A on such a small wire is probably close if not more than the limiting current, which would also explain that your metal is reactive .... if you namely go beyond limiting current for your magnesium reaction you will get potassium deposition or alloy deposition
    Also, I think it wont work to do molten magnesium in your cruicible and the cruicible being the anode .... as the magnesium would drop down and then reaoxidize on the anode
    For that the crucible should be the cathode and another graphite piece(/rod) as the anode

    • @themonkeyspaw7359
      @themonkeyspaw7359 8 หลายเดือนก่อน

      Can't use graphite for reducing alkali metals, it would eviscerate his crucible in no time. Likely the same for alkali earth metals

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน +1

      I'm pretty confident that we're not dealing with any potassium metal here. If we've made potassium under these conditions, even in an alloy, it goes against everything potassium tends to do in high temperature chloride melts. It is extremely difficult to deposit potassium from any molten salt, so this would be quite a feat.
      But yes, the crucible being the anode was not ideal here - I wasn't expecting the metal to sink. I address a couple of ways to get around this at around 12:12.

  • @izzybarwick1521
    @izzybarwick1521 8 หลายเดือนก่อน +19

    you will wake up tomorrow

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน +8

      Conflicting messages throughout this comment section already…

    • @nunyabisnass1141
      @nunyabisnass1141 8 หลายเดือนก่อน

      You wouldn't know if I didn't.

    • @hugh261
      @hugh261 8 หลายเดือนก่อน

      Unless you don't.

    • @neepsmcfly4176
      @neepsmcfly4176 8 หลายเดือนก่อน

      You won't as there is no tomorrow.

    • @AP83
      @AP83 8 หลายเดือนก่อน

      You might not wake up tomorrow, carbon-monoxide always wins.

  • @noviceartisan
    @noviceartisan 8 หลายเดือนก่อน +1

    Should have blendered the oxides and such after removing from salts, the heated to 7-800c with a bunch of glass or boric acid etc for flux, and metal should reform?

  • @Calandron1
    @Calandron1 8 หลายเดือนก่อน +3

    That is so funny. I literally use the exact same tea spoons for my molten salt/metal experiments. I love it

  • @fmdj
    @fmdj 7 หลายเดือนก่อน +2

    I have a crazy idea I'd like to try: I think it should be possible to dissolve MgCl2 in acetone or ethanol (less so than in water but still) and you should be able to extract the Mg from there by electrolysis. For a reason I am unable to explain for having forgotten it, the electrolysis doesn't work in water but could work in these other solvents.
    It is hugely recommended against because the electrolysis will also produce tons of weird organic compounds and everything might catch on fire.
    But it should be a pretty fun experiment.

    • @christopherleubner6633
      @christopherleubner6633 4 หลายเดือนก่อน +1

      No it does not work, but it does do something a lot more interesting if you are using an alcohol. It makes organic magnesium halides aka griginard reagents. ❤

    • @fmdj
      @fmdj 4 หลายเดือนก่อน

      @@christopherleubner6633 uuu :)

  • @AliHagh-o3f
    @AliHagh-o3f 8 หลายเดือนก่อน +2

    I enjoyed your videos. It is also good to post a video on the production method of ammonium persulfate

  • @WaffleStaffel
    @WaffleStaffel 8 หลายเดือนก่อน +1

    That you got anything at all is impressive. Can you imagine being in the time of Davy, and relying on nothing but an old battery that's been used for lectures and experiments for years?

  • @flyingshards595
    @flyingshards595 8 หลายเดือนก่อน

    Nice work! Really enjoying your metals series. Some are tougher than others, glad you were successful!

  • @ducky_experimenter-3000
    @ducky_experimenter-3000 8 หลายเดือนก่อน +2

    I never seen that anywhere. I think magnesium is a very cool metal.

    • @magnuswootton6181
      @magnuswootton6181 8 หลายเดือนก่อน

      its the cheapest and most light weight of all metals!

    • @WaffleStaffel
      @WaffleStaffel 8 หลายเดือนก่อน

      @@magnuswootton6181 I don't know about it being the cheapest, but magnesium allows are very lightweight, and used extensively in the aerospace industry.

  • @Scrogan
    @Scrogan 8 หลายเดือนก่อน

    If the metal sinks off the cathode as it forms, it will sink onto the anode where it will inhibit the oxidation of chloride by oxidising itself away. Assuming you don’t put some sort of insulating vessel inside the molten salt, or maybe some sort of much denser chloride salt that the magnesium metal will float atop. Best off performing the electrolysis at a lower temperature and attempting to remelt it separately.
    Didn’t think about using the graphite as the cathode, that’s sensible.
    Bet that dendritic sponge burns well though. Maybe you could dissolve the salts off in particularly high pH water?

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      I was kind of surprised to see that the sponge doesn't even burn. The salts within the sponge completely coat the stuff when you heat it up, and I couldn't ever get it to ignite.
      Dissolving with very basic solution is something I hadn't thought of though. Might work! If I ever try this again, I'll have to give it a go.

  • @Preyhawk81
    @Preyhawk81 4 หลายเดือนก่อน

    There was an wet labor elektrolysis with an double salt of ammoniummagnesiumsulfate.No exact descriptions. But writen in an Chemistry book from 1920

  • @kaboom4679
    @kaboom4679 8 หลายเดือนก่อน +1

    The comments are getting weird .
    We now have Schrodinger's chemist .

  • @Dontlikeyellow
    @Dontlikeyellow 8 หลายเดือนก่อน +1

    You could melt the sponge stuff in a non-reactive atmosphere. Of course the usual option is argon but it would be interesting to see a fuel like hydrogen to be used since it doesn’t oxidize.

  • @MIH0319
    @MIH0319 8 หลายเดือนก่อน +2

    Try dissolving MgCl2 and KCl in water and boil the solution down to crystallize carnallite (KMgCl3·6H2O). It should dehydrate easier than the MgCl2 and give better yields. Also the magnesium sponge can potentially be a good source of highly reactive magnesium (for alcohol catalyzed sodium synthesis or similar experiments).

    • @WaffleStaffel
      @WaffleStaffel 8 หลายเดือนก่อน

      _"Carnallite may not only be fluorescent but is capable of being phosphorescent"_ very interesting

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน +1

      The only trouble with the magnesium sponge is that it's filled with salt from the melt, making it largely unreactive outside of aqueous solutions (which dissolve those salts away, of course). I tried burning it and it wouldn't even ignite, since the salts kept coating and protecting the metal within.
      Any ideas for removing the salts and leaving the magnesium sponge intact? Maybe it would still work for those kinds of reactions anyway? I'm unsure...

    • @MIH0319
      @MIH0319 8 หลายเดือนก่อน

      @@ScrapScience Only thing I can think of is putting it inside a blender along with mineral oil and dump the resulting mix in water to get rid of the salts. I would probably directly use it in the sodium production.

    • @heorhiypavlovych9779
      @heorhiypavlovych9779 8 หลายเดือนก่อน

      ​@@ScrapScience just an idea what if you put it into coffee grinder; theoretically the chloride shouldnt be a problem anymore ( but on the other hand it can become pyrophoric not sure)

  • @ihtsarl9115
    @ihtsarl9115 8 หลายเดือนก่อน

    Thanks for this video very well presented. I would have tried melting all the black stuff under argon or nirogen gas to melt the magnesium, that would have incresed your yield of Mg metal.

  • @bromisovalum8417
    @bromisovalum8417 8 หลายเดือนก่อน +1

    I wonder if the spongy high surface stuff would be good to make Grignard reagents?

    • @evilplaguedoctor5158
      @evilplaguedoctor5158 8 หลายเดือนก่อน +1

      Ohh, that makes me wonder if it would be useful for thermochemical dioxane process to make sodium, especially since it reacts with water, so could also do away with the starter bit of sodium/lithium as a drying agent.

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน +1

      It seems rather unreactive outside of aqueous conditions since it's filled with the salts from the melt. If we could remove the salts though...

    • @philouzlouis2042
      @philouzlouis2042 7 หลายเดือนก่อน +1

      It seems that ultrasonication (about 25 years ago) was used into the department nextdoor (physical chemistry and corona chemistry) where I was making my endwork study - report (photochemistry)) can be used so that cavitation bubbles exploding onto the surface of Mg metal makes its apparent surface so big that the metal can then be used as such for Grignards without drying, ether nor dioxane.
      I know that ultrafine Al dendritic dust (made from exploding Al wire under high amperage and vacuum, then exposed to slow flow of cold air so softly passivated) can be compressed into a spongeous form. This dust has a much higher specific impulse for rocketery than conventionnal german black and it makes a sponge that can absorb TNT forming a core for implo-explosion-detonation; the nanometric Al dust generated into the TNT detonation makes a FAE that suck up all O2 and N2.
      PHZ
      (PHILOU Zrealone from the Science Madness forum)

  • @blg53
    @blg53 8 หลายเดือนก่อน +1

    Could it be that what you see reacting with water is in fact a tiny percentage of metallic Potassium that you managed to reduce in the same electrolysis bath?

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      It's possible, but it would be surprising. Potassium is notoriously difficult to deposit from its molten salts, especially chloride melts, since the reaction is thermodynamically unfavourable and the metal is generally soluble in the melt itself.
      If we had in fact made a magnesium-potassium alloy, I'd also have expected it to give a slight purple flame when burning it - which we didn't see.
      Again, it's possible, but the evidence seems to suggest that it's unlikely.

  • @brfisher1123
    @brfisher1123 8 หลายเดือนก่อน +1

    Is it possible to extract the lanthanide metals like lanthanum and neodymium from their compounds using electrolysis?

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      Yep! We'll hopefully be trying some of those later on in the molten salt electrolysis series!

  • @DeliciousDeBlair
    @DeliciousDeBlair 8 หลายเดือนก่อน

    Small prills are super easy to filter out with using a fine screen.

  • @Alberto_Travagin
    @Alberto_Travagin 8 หลายเดือนก่อน +1

    I was waiting for this! Great video!
    P.s. Could you please make a video about the production of persulfates?

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน +2

      At some point, yes! It's on my list of future projects.

  • @chanheosican6636
    @chanheosican6636 8 หลายเดือนก่อน

    Another method is Silicon to purify Calcium and Magnesium metal. It could work since it binds to iron, etc if needed. But I assume it is quite pure Magnesium. Yes, Oils are too low for the project Cool video. Patent info on it said Silicon may work. However high temperatures are required. Also works for Magnesium.

  • @sheesh7872
    @sheesh7872 8 หลายเดือนก่อน +2

    Thats really cool shit, never seen that anywhre

  • @fmdj
    @fmdj 7 หลายเดือนก่อน

    7:10 could you maybe have a bit of potassium contaminating your magnesium that would explain the tame but existing reaction of your product with water?

  • @yankozlatanov
    @yankozlatanov 8 หลายเดือนก่อน +1

    Maybe just try to collect more of that spongy stuff and melt it in solid blob?

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      I didn't explain it very clearly, but that was kind of the idea at the end of the electrolysis run. I tried making a whole bunch of the spongy stuff and then stopped the electrolysis and raised the heat to get it all to melt together. It seems like the sponge was resistant to melting together, but maybe it just needed to get hotter for longer... I don't know.

  • @olimp231
    @olimp231 8 หลายเดือนก่อน

    Nice video. First time to see a magnesium extraction. Have you managed to clean your crucible?

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      Are you referring to the fact that I spilled the molten salt in the furnace last episode? I completely forgot to mention that...
      Yeah, I was luckily able to clean it all out and the furnace still works perfectly. :)
      If you're just referring to the crucible I used in this video, everything easily washed out with a little water.

    • @olimp231
      @olimp231 8 หลายเดือนก่อน

      ​@@ScrapScience I was referring to the crucible from this video. Making magnesium is very tempting and maybe I will try to replicate your method but I don't want to damage my crucible. It is quite expensive for 60mg of the metal ;).
      I like your videos because it's like watching pioneer chemists on their way to discover new elements. You don't use highly specialized equipment (although it's getting better over time :) that is available for other chemistry amateurs.
      Thank you and I wish you a happy New Year :).

  • @CryptoFrenzyX
    @CryptoFrenzyX 21 วันที่ผ่านมา +1

    Can i mix it with NaOH to lower melting point or it would get wlectrolyzes first?

    • @ScrapScience
      @ScrapScience  19 วันที่ผ่านมา +1

      I'm honestly not sure. Generally, mixing chloride and hydroxide ions in a melt you want to electrolyse is probably a bad idea. The oxidation products can end up generating chlorate and other oxyhalogen species, but this may be at a high enough temperature that it's not a concern. Possibly worth a try.

    • @CryptoFrenzyX
      @CryptoFrenzyX 19 วันที่ผ่านมา

      @@ScrapScience okay thanks for response

  • @MrMoonFlame
    @MrMoonFlame 8 หลายเดือนก่อน

    I think you have made magnesium anhydride, which releases hydrogen when exposed to water. If it’s hydrogen the bubbles should ignite when exposed to a flame.

  • @tv-pp
    @tv-pp 8 หลายเดือนก่อน

    You should do this is magnesium sulphate it's very cheap and common from Epson salt

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      When anhydrous, magnesium sulfate will decompose before melting. Even if it didn't, the anode reaction would be rather complex when working with molten sulfates. I don't know exactly what would happen, but I doubt it would be well-behaved...

  • @nicholasterlecki8564
    @nicholasterlecki8564 8 หลายเดือนก่อน

    I'm pretty sure one of the experiments in my 80's chemistry set proved that Magnesium in ribbon form does react with water. Think it had to be hot water. This is from memory, I'm trying to hunt out the manual in my terribly organised bookshelf.

  • @DeliciousDeBlair
    @DeliciousDeBlair 8 หลายเดือนก่อน

    The reversible double carbon reduction reaction against magnesium oxide would be a better way to do this.
    That or the one way reaction with aluminum.
    Both require a lot of heat energy, but both are very precise and precisely controllable.

  • @T3sl4
    @T3sl4 8 หลายเดือนก่อน

    I wonder if some potassium fluoride would help the oxychloride mixture dissolve/electrolyze?
    Also be interesting to use a graphite rod anode in the middle, letting metal form on and sink to the bottom of the crucible.
    I wonder if carbide formation is relevant here? Mg2C I think isn't very common, or stable, but with direct elemental synthesis, who knows. A welded steel crucible cathode might be mitigation for this (Fe and Mg are pretty much insoluble/immiscible).

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      I'm definitely no expert on what fluorides would do. It's definitely possible, but I don't have much desire to work with fluorides...
      And yeah, magnesium carbide is also a possibility. But I'm not really sure on that front either, honestly...

  • @PureCoKayne
    @PureCoKayne 8 หลายเดือนก่อน +1

    Is that furnace 10A or 15A? :O I have a few too many failed plaster of paris furnaces... ; _ ;

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      This one is 10 A I believe. One rated for 15 A would require outlets that I don't even have in my house, I'm pretty sure.

    • @PureCoKayne
      @PureCoKayne 8 หลายเดือนก่อน

      OO ty ty! I couldn't quite tell from the IEC plug in the back ;) Now I've got to go price a 10A furnace for myself ;p

  • @PlaDroid
    @PlaDroid 2 หลายเดือนก่อน

    What about epson salt?, ir si cheaper, can i extract nagnessium from there ando sepárate ir from the sulphurim that😀 can be useful as well?

    • @ScrapScience
      @ScrapScience  2 หลายเดือนก่อน

      When anhydrous, magnesium sulfate will decompose before melting. Even if it didn't, the anode reaction would be rather complex when working with molten sulfates. I don't know exactly what would happen, but I doubt it would be well-behaved...

  • @7hunderstorm242
    @7hunderstorm242 8 หลายเดือนก่อน

    Well done !

  • @memejeff
    @memejeff 8 หลายเดือนก่อน

    great video

  • @idontknowmyfirstname69
    @idontknowmyfirstname69 8 หลายเดือนก่อน

    I dunno that fine grain magnesium might make for an interesting thermite reaction. Just saying

  • @loganosmolinski4446
    @loganosmolinski4446 8 หลายเดือนก่อน

    HEY ive been looking for a diy thing for magnesium. I was considering it for a looping oxidation furnace. I eventually decided id rather use lime since calcium cyanamide is a byproduct, aka easy nitrogen fixation.

  • @createvideo561
    @createvideo561 5 หลายเดือนก่อน

    Not surprising considering that little bead was around 10mg you are looking at about 250J pf which at sumch small piece and considering the process is adiabatic around 22%-25% of the energy is the form of visible light which means around 60J in light for about four seconds that means about 15W of light on average that is hell bright of light hou know

  • @johnslugger
    @johnslugger 8 หลายเดือนก่อน +1

    *You find the most awkward way to do the simplest jobs. The Graphite Crucible should have been your negative and the Carbon rod be the positive. Minimum temp 1400F. at 3.3 volts and 20 amps. Result: 24 grams MG metal in bottom of Crucible in about 10 minutes. Use Magnesium Oxide and Sodium Fluoride and just keep adding more MgOx as needed. Very similar to Aluminum making process.*

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      You might benefit from a little research into Faraday's laws of electrolysis...

    • @johnslugger
      @johnslugger 8 หลายเดือนก่อน

      @@ScrapScience You should know better than to use a Small Cathode and plus a LARGE Anode in combination in molten salt electrolysis.

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      I dunno mate, you always make it very difficult to take your comments seriously, lol.
      A 1500% error in your original claim doesn't make me very keen to follow your advice...

    • @johnslugger
      @johnslugger 8 หลายเดือนก่อน

      @@ScrapScience Let your EGO slip away. Only then can you learn from a Master Chemist.

  • @kemster9495
    @kemster9495 8 หลายเดือนก่อน

    Could you do a video on potassium persulfate

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      One of these days I'll get around to it. It's on my list of projects to work on, but it's unlikely to come any time soon.

  • @blocksers6948
    @blocksers6948 8 หลายเดือนก่อน

    Hi, just wondering is there ever going to be the synthesis of perchlorates proposed by you in the video about sodium chlorate?

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      I can guarantee I'll make at least a couple of videos on the topic of perchlorate synthesis at some point. I'm still on the research stage for that project, but it will happen one day.

    • @blocksers6948
      @blocksers6948 8 หลายเดือนก่อน

      Great hearing that. Im also currently looking into said process and i am astounded at how much more complicated and difficult the perchlorate process is.
      Kind regards from Denmark@@ScrapScience

  • @mikegLXIVMM
    @mikegLXIVMM 8 หลายเดือนก่อน

    Are there any research papers out there for extracting magnesium from magnesium chloride?
    I know there has been some work on this.

  • @mattharvey8712
    @mattharvey8712 3 หลายเดือนก่อน

    Bravo.......screw magnesium.......it makes hydrogen .......when u put in water........measurements how much yield......also reactor with gas shield.....cheers

  • @ageofengineering159
    @ageofengineering159 8 หลายเดือนก่อน

    Cool!

  • @jozefnovak7750
    @jozefnovak7750 8 หลายเดือนก่อน

    Super! Thank you very much!

  • @jaimeortega4940
    @jaimeortega4940 8 หลายเดือนก่อน

    Couldn't you put the powder un a centrifuge?

  • @chanheosican6636
    @chanheosican6636 8 หลายเดือนก่อน

    Have you thought of Purifiying it with Mineral Oil sort of what you would do with Sodium? Or is that a totally different method? Cool video indeed.

    • @6alecapristrudel
      @6alecapristrudel 8 หลายเดือนก่อน

      Melting point is way too high for mineral oil.

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      Yeah, if we could melt the magnesium at temperatures that mineral oil could tolerate, this would be a great method for coalescing the metal. Sadly, magnesium's melting point is way too high.

  • @jimsvideos7201
    @jimsvideos7201 8 หลายเดือนก่อน

    Nice spot to film the intro. Do you mind sharing where that is?

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      Tasmania is the one! I'm afraid I won't be able to be any more specific than that though.

    • @jimsvideos7201
      @jimsvideos7201 8 หลายเดือนก่อน

      @@ScrapScience Fair enough! I should visit the country some time, it seems like time well spent.

  • @Raul28153
    @Raul28153 8 หลายเดือนก่อน

    could you have baked the Magnesium chloride at 400 for a few hours to drive water off?

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      That's essentially what I was doing at around 2:50. No matter how you heat it though, there's no way to remove all of the water without some kind of decomposition of the salt occuring (without complex drying techniques, that is).

  • @yod999
    @yod999 7 หลายเดือนก่อน

    Can l make mg with Mgso4

    • @ScrapScience
      @ScrapScience  7 หลายเดือนก่อน

      Anhydrous magnesium sulfate decomposes before melting, so it's unlikely.

  • @aryansingh7209
    @aryansingh7209 8 หลายเดือนก่อน

    i know you can't make clickbaits nor would but small yields decreases viewers

  • @Weirdvideomaker
    @Weirdvideomaker 8 หลายเดือนก่อน +1

    Of course it’s reacting with water you put potassium in it. I’m no chemist but it seems obvious to me

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน

      Potassium is notoriously difficult to deposit from molten salts like this, especially mixtures containing chloride. If we actually deposited potassium alongside our magnesium product, that would be a surprising result.

    • @alexanderrice5224
      @alexanderrice5224 8 หลายเดือนก่อน

      Are you by any chance making some kind of acid that's accelerating the reaction between water and magnesium?
      Your reaction produces chlorine gas, and your starting products contained water. Is it possible that you're making some hydrogen chloride somewhere in the process?
      What's the pH of the solution after dunking the magnesium sludge into it?

  • @elarcadenoah9000
    @elarcadenoah9000 8 หลายเดือนก่อน

    make oxigenated wather

  • @adams6412
    @adams6412 8 หลายเดือนก่อน +3

    you will not wake up tomorrow

    • @ScrapScience
      @ScrapScience  8 หลายเดือนก่อน +9

      Well darn… I was looking forward to tomorrow.

    • @magnuswootton6181
      @magnuswootton6181 8 หลายเดือนก่อน

      what do u have magical powers to inflict death on people.

    • @adams6412
      @adams6412 8 หลายเดือนก่อน +1

      @@magnuswootton6181 im like christine weston chandler its called shunning

    • @WaffleStaffel
      @WaffleStaffel 8 หลายเดือนก่อน

      @@adams6412 Why would you shun him from afar? He's a super nice guy!

  • @IdiotWithEducation
    @IdiotWithEducation 8 หลายเดือนก่อน

    This metallic spongey stuff could be used to make a hydrogen fuel cell, for some tool or other idea that requires it

  • @williambradley611
    @williambradley611 8 หลายเดือนก่อน +1

    Like this comment

  • @Krzysix.io11
    @Krzysix.io11 7 หลายเดือนก่อน

    Hi, I've been interested in chlorate production for quite a while now. Finally I found mmo anodes at a reasonable price in the EU. But I have a question and I think you are the person who might know the answer. Question is: what's better? Plate or mesh? Both anodes are in same price. From NurdRange's vid I know that KClO3 crystals can grow in the holes of the mesh blocking electron flow, and that's what I'm afraid of. I guess mesh has a larger surface area so I don't know which one to pick. Hope you know the answer

    • @ScrapScience
      @ScrapScience  7 หลายเดือนก่อน +1

      Crystals growing in the holes is not a huge problem, provided you’re not running your anode at a very high current density. Even with plate anodes, crystals can still easily deposit on the electrode surface.
      Even the surface area of the plate vs mesh is not significantly different most of the time.
      All up, it’s pretty much a choice that doesn’t matter. Pick the one you think would look the best I suppose.

  • @CF23583
    @CF23583 8 หลายเดือนก่อน

    en.wikipedia.org/wiki/FFC_Cambridge_process Reducing metal oxides to metal in molten CaCl2 or it's eutectics (NaCl/KCl/CaCl2)

    • @ScrapScience
      @ScrapScience  7 หลายเดือนก่อน +1

      Love it! In fact, it's already on my list of future video ideas. It's a very cool process.

  • @alllove1754
    @alllove1754 8 หลายเดือนก่อน

    I bought a magnesium fire starter. I played with the metal, filed it, played with powdered and flaked (burned and such). The main block ended up in a cup of water, can't remember what I was doing, but anyhoo, it became covered in this white stuff, looking like an oxide layer on steroids, but the black and whiteness of it let's me know that spongy stuff is all magnesium. It is very reactive, basically with more surface area its almost like activated aluminum (like mercury treated). A simple fire test proves this, as you see with the beads. You have far more magnesium than those little beads. That Slag is pretty pure magnesium.

  • @aufoslab
    @aufoslab 8 หลายเดือนก่อน

    Hi!