System Design of ChatGPT | Mock interview

แชร์
ฝัง
  • เผยแพร่เมื่อ 17 ม.ค. 2025

ความคิดเห็น • 38

  • @KetanRathod-d8x
    @KetanRathod-d8x 2 วันที่ผ่านมา

    Awesome video on system design

  • @saifrehmannasir3743
    @saifrehmannasir3743 หลายเดือนก่อน +10

    Great work as always! This looks like Retrieval Augmented Generation if I am not wrong.

  • @pratikkumar939
    @pratikkumar939 หลายเดือนก่อน +4

    Great choice of problem statement

  • @Md_sadiq_Md
    @Md_sadiq_Md หลายเดือนก่อน +3

    Pushing the algorithm ❤

  • @maheshshekatkar4268
    @maheshshekatkar4268 หลายเดือนก่อน +10

    I am currently developing a conversational AI application, similar to ChatGPT, which will be integrated within a financial investment platform. To maintain context throughout the conversation, I would appreciate guidance on the optimal implementation approach using LangChain, Azure OpenAPI, and a vector database.

    • @mr.mystiks9968
      @mr.mystiks9968 หลายเดือนก่อน +3

      Since you’re developing an app with zero users, why would you want the ultimate optimal method used by big tech companies handling way more traffic than your tiny app?

    • @gaurravprakash
      @gaurravprakash 16 วันที่ผ่านมา

      Start small. I am building a chatbot as well. You can maintain context by storing recent messages, let's say last 10 messages. At the 11th message, you summarize past 10 messages, and store. Then with each request to the llm, pass this summarized context as well as the user query. If your app scales, then you can come to several other approaches of optimization.

  • @ashishsinghchauhan6304
    @ashishsinghchauhan6304 หลายเดือนก่อน +1

    Very informative.

  • @Girijeshcse
    @Girijeshcse หลายเดือนก่อน +7

    This is more of AI chatbot design not a chatGPT kinda system design. Good try as always!!

  • @Aashick_Nizar
    @Aashick_Nizar 27 วันที่ผ่านมา +1

    Thank you for all the amazing content and hard work you put into your videos, Yogita!
    Since caching and prefetching documents used for faster response times. How can cache invalidation be handled, especially when dealing with new data or updates in the vector database?

  • @thecodingden01
    @thecodingden01 24 วันที่ผ่านมา

    good

  • @SpiritOfIndiaaa
    @SpiritOfIndiaaa หลายเดือนก่อน +1

    thanks a lot , what kind of tool are you using draw the daigrams here ? could you please let me know

  • @tanmoykhawas6711
    @tanmoykhawas6711 12 วันที่ผ่านมา

    Please explain embedding . It wasnt answered..

  • @joeljacob4685
    @joeljacob4685 หลายเดือนก่อน +1

    My two favourite people in one video ❤. It was pretty good , terms like hsnw , embeddings are first time for me, also the explanation of vector db is pretty easy to understand. I loved the way of breaking down the problem into smaller problem and solving it one by one .
    Informative video ❤

  • @wetalks9166
    @wetalks9166 12 วันที่ผ่านมา

    Bring Arpit B also.

  • @moediakite895
    @moediakite895 หลายเดือนก่อน

    👊

  • @KKKK-pl8yf
    @KKKK-pl8yf หลายเดือนก่อน

    scary stuff

  • @sedlyf7981
    @sedlyf7981 5 วันที่ผ่านมา

    I don't get why Vector DBs are being used here. If we're searching for some documents, checking cosine similarity between indexed documents and user queries makes sense, but not for simple sequence completion. Am I missing something? Please help.
    Edit: Okay, I looked it up at its fairly simple, ChatGPT allows Retrieval Augmented Generation now, which in simple terms is automated/AI-assisted prompt engineering. The Vector DB part just finds the relevant documents/chunks of documents and simply adds them to the prompt, which improves output quality. This video explains it quite well, it's actually much simpler than I expected: th-cam.com/video/Ylz779Op9Pw/w-d-xo.html&ab_channel=ShawTalebi

  • @gaurravprakash
    @gaurravprakash 16 วันที่ผ่านมา +2

    She said to assume that intelligence is provided by the model, consider it a black box. Why would you go on and talk about the crawler then?

  • @samadhanpawar6554
    @samadhanpawar6554 12 วันที่ผ่านมา +1

    This is kind of RAG chatbot not ChatGPT anyway nice try 👍

  • @thecodeschool
    @thecodeschool 11 วันที่ผ่านมา

    Sounds more like low level design. I cannot really connect with this one.

  • @whiteHorse11011
    @whiteHorse11011 5 วันที่ผ่านมา

    I did find your previous contents really helpful. But I am pretty sure Sam Altman didn't disclose the backend / system design of OpenAI to you both. As everyone knows, system design rounds are open-ended and no solution is perfect, you are just speculating what they might have thought while designing ChatGPT backend. Please backup your videos with research paper(s) or any other documentations/whitepapers before you just discuss any system design of a company like OpenAI on channel where many people come for interview preparations.
    - FAANG engineer

    • @sudocode
      @sudocode  5 วันที่ผ่านมา +1

      We're happy you found our previous videos helpful, but the goal of these mock interviews is to showcase a thought process, not necessarily reveal the exact design of a system.

  • @rahulsaurav189
    @rahulsaurav189 หลายเดือนก่อน +8

    What's this? Does he even understand what GPT is? In the name of system design and making money, you all have made theory useless. Read something before doing all these BS

    • @sudocode
      @sudocode  หลายเดือนก่อน +2

      At least we are trying. Besides, if you would Google any of us you would know that we really don’t have to depend on money from TH-cam lol

    • @Anonymous____________A721
      @Anonymous____________A721 หลายเดือนก่อน

      Hnnm​@@sudocode

    • @jonu.1504
      @jonu.1504 หลายเดือนก่อน +5

      This is खिचड़ी. these bhaiya and didis can stop the world with a single "#". haha.

    • @ankushroy5606
      @ankushroy5606 หลายเดือนก่อน +1

      not favoring anyone but who ever is the best can you teach us on utube pls i need it

    • @rahulsaurav189
      @rahulsaurav189 หลายเดือนก่อน

      @@ankushroy5606 I can do that but for it won't be free

  • @qwoijzacxoi
    @qwoijzacxoi หลายเดือนก่อน +1

    first!!! im the first

  • @mr.mystiks9968
    @mr.mystiks9968 หลายเดือนก่อน +2

    Something about this mock interview seems unnatural. He proposes a design but doesn’t really go in depth, and tries to compensate for this by quoting white papers or saying “I’m choosing this Algo because it’s easy to understand for ME”. Overall, this sound like a solution that would give you a mid level engineer offer.

    • @sudocode
      @sudocode  หลายเดือนก่อน +2

      Jealous much Mr Mystiks?

    • @mr.mystiks9968
      @mr.mystiks9968 หลายเดือนก่อน +1

      Not really. There are other videos you made like how to do resource estimation which I’ve liked. But there are other channels like Jordan Has No Life that go into way more depth on specific questions, and reading some of DDIA makes it obvious why this solution wouldn’t get beyond a mid level engineer offer.

    • @sudocode
      @sudocode  หลายเดือนก่อน +2

      First of all, one interview does not decide the level of offer, for senior roles there are mostly 2-3 system design rounds and it is okay for any candidate to do okayish in one and really good in another one. We spent time reading papers and recording a video that can provide some value to viewers. If you cannot appreciate it, there is no point being negative in comments. Even better, you can create your channel and do a better job than us. We will be cheering for you. Thanks.

    • @mr.mystiks9968
      @mr.mystiks9968 หลายเดือนก่อน

      @@sudocodetry making a more in depth video next time, it’ll help your interviewing skills and the channel. read some DDIA then come back.

    • @soorazdai
      @soorazdai 19 วันที่ผ่านมา +1

      Indeed he is very talented, but don't know why he wanted to go into Vector DB, and present as if Chat gpt like tool relies on Vector db only.
      That is not even ml or gen ai or anything. Yes the embedding model is an AI which creates vectors out of text.
      Actually the question regarding system design is considering the AI model as black box, and creating something like a RAG model but handling the chat history and limitation.