Lyapunov Exponents - Dynamical Systems | Lecture 31

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ธ.ค. 2024

ความคิดเห็น • 20

  • @michaelzumpano7318
    @michaelzumpano7318 10 หลายเดือนก่อน +4

    This is the first of your videos that I’ve watched. It is very clear and easy to follow. I’ll back up and watch the series from the beginning. Excellent work!

  • @scraps7624
    @scraps7624 ปีที่แล้ว +2

    These videos are incredibly interesting, thanks for your work!

  • @ogunstega7348
    @ogunstega7348 7 หลายเดือนก่อน +1

    at 2:23 you said it is quite easy to do this for discrete dynamical systems, my question does this same approach for computing the Lyapunov exponents works for continuous dynamical systems? Thanks

    • @jasonbramburger
      @jasonbramburger  7 หลายเดือนก่อน

      I follow this paper: www.sciencedirect.com/science/article/abs/pii/0167278985900119
      There is associated MATLAB code that is easy to implement: uk.mathworks.com/matlabcentral/fileexchange/4628-calculation-lyapunov-exponents-for-ode

  • @gauravmalik2180
    @gauravmalik2180 7 หลายเดือนก่อน +1

    brilliant continue sir👍

  • @Bioinforere99
    @Bioinforere99 5 หลายเดือนก่อน +1

    Very helpful, thx

  • @SaurabhSharma-su2yx
    @SaurabhSharma-su2yx 7 หลายเดือนก่อน

    What is the name of theorem that you mentioned at @5:31?

    • @jasonbramburger
      @jasonbramburger  7 หลายเดือนก่อน

      Oseledets Theorem: en.wikipedia.org/wiki/Oseledets_theorem

  • @maggie5590
    @maggie5590 8 หลายเดือนก่อน +1

    quick question, why take the limit as n -> infinity for the lyapunov exp? is it just to satisfy the equality of delta n = delta 0 e^lambda*n? because I thought there can be many lyapunov exponents for a given dynamical system.

    • @jasonbramburger
      @jasonbramburger  8 หลายเดือนก่อน +1

      The limit provides an average that gets rid of transients. Yes, there are many Lyapunov exponents for a dynamical system and this comes from the dependence on the initial condition. If you start on a fixed point you will get a different Lyapunov exponent than on a 2-cycle or on a transient orbit. Typically people refer to "the Lyapunov exponent" of a chaotic system as that of "almost every" initial condition, which is a transient orbit over the attractor. This is where the limit comes in as you get an average over the attractor (see ergodic theory).

    • @maggie5590
      @maggie5590 8 หลายเดือนก่อน +1

      thanks, this video was really helpful!@@jasonbramburger

  • @vivekdixit9208
    @vivekdixit9208 6 หลายเดือนก่อน

    Nice explanation! If we have a time series data point i.e. (t,x) where x is the signal and t is the time. Can we get the Lyapunov exponent for this ?

    • @jasonbramburger
      @jasonbramburger  6 หลายเดือนก่อน

      Yes, just make t an autonomous variable. In continuous time you extend the system to x_1 ' = f(x_1,x_2) and x_2' = 1, where x_2 = t. You do the same basic idea for discrete time.

  • @md.sarowarhossainrana4787
    @md.sarowarhossainrana4787 8 หลายเดือนก่อน +1

    How to find lyapunov exponent for 3D continuous model?

    • @jasonbramburger
      @jasonbramburger  8 หลายเดือนก่อน +1

      I follow this paper: www.sciencedirect.com/science/article/abs/pii/0167278985900119
      There is associated MATLAB code that is easy to implement: uk.mathworks.com/matlabcentral/fileexchange/4628-calculation-lyapunov-exponents-for-ode

    • @md.sarowarhossainrana4787
      @md.sarowarhossainrana4787 8 หลายเดือนก่อน +1

      @@jasonbramburger thanks a lot

    • @md.sarowarhossainrana4787
      @md.sarowarhossainrana4787 8 หลายเดือนก่อน

      @@jasonbramburger I have tried the matlab code for my model but getting wrong output. For example, at a certain parameter value I have limit cycle therefore the lyapunov spectrum for my 3D model should be (0,-,-) right? However using the code i am getting (+,-,-).

  • @SaurabhSharma-su2yx
    @SaurabhSharma-su2yx 7 หลายเดือนก่อน

    What is the name of theorem that you mentioned at @5:31?