Manifolds #1 - Introducing Manifolds

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ธ.ค. 2024

ความคิดเห็น • 103

  • @niceperson2
    @niceperson2 ปีที่แล้ว +15

    I think someone without a masters can also understand this easily. The transition from topological spaces to manifolds was beautifully shown

  • @FlareGunDebate
    @FlareGunDebate 4 ปีที่แล้ว +92

    I've just starting this series but so far this is the best video I've found on topology and manifolds. Thank you.

  • @ghadaalradi8875
    @ghadaalradi8875 25 วันที่ผ่านมา

    I have an exam in a short while and I don't know where to start, but your way of explaining is great, so great I hope it lasts.❤

  • @arnobchatterjee773
    @arnobchatterjee773 ปีที่แล้ว +1

    What an amazing introduction to point set topology!

  • @petermarshall8212
    @petermarshall8212 2 ปีที่แล้ว +8

    Thank you for sharing your gifted understanding … really quite wonderful …

  • @stevemenegaz9824
    @stevemenegaz9824 ปีที่แล้ว +1

    Very nicely done. Easy to understand.

  • @mireazma
    @mireazma 4 ปีที่แล้ว +21

    Compared to many other videos, you explain clearly, thanks.

  • @cannoli1363
    @cannoli1363 3 ปีที่แล้ว +1

    Great explanation and such a BRILLIANT outro!

  • @sofiyavyshnya6723
    @sofiyavyshnya6723 4 ปีที่แล้ว +14

    Excellent videos! I love your entire series on Manifolds. You explain things so that even I can understand :) Keep up the good work!

    • @WHYBmaths
      @WHYBmaths  4 ปีที่แล้ว +7

      Thank you very much glad they are helpful!

  • @johnsondick3176
    @johnsondick3176 3 ปีที่แล้ว +1

    Beautiful. The concept is now clearer

  • @lolitoomaaan
    @lolitoomaaan 5 หลายเดือนก่อน

    What a great explanation! Many thanks!

  • @febojarlock9469
    @febojarlock9469 3 ปีที่แล้ว +1

    I was about to give up on manifolds until I saw your series! Thank you dude!

  • @sathitm5188
    @sathitm5188 5 หลายเดือนก่อน

    Nice explanation. Really helpful for beginners. thanks

  • @fizikchy
    @fizikchy ปีที่แล้ว

    10:04 Türkiye, long live :))
    Great video series. I also visited your github page, found some pdf files so on. You're doing a great job.

  • @christophera3330
    @christophera3330 ปีที่แล้ว +1

    Dude - you're amazing!

  • @MathUniversity1.0
    @MathUniversity1.0 3 ปีที่แล้ว +6

    This is such a wonderful series. Thanks for making it pretty basic and accessible yet interesting so as to cover the essence of manifolds. I subbed in the first 2 minutes -- literally. Looking forward to more math content!

  • @andrewsheehy2441
    @andrewsheehy2441 3 ปีที่แล้ว +20

    This is so good. I loved the jab at the flat earthers! It would be cool to print out series of patterns on paper and then stick them together accurately with the result that you'd end up with a 3D object.

    • @smileifyoudontexist6320
      @smileifyoudontexist6320 2 ปีที่แล้ว

      One could Not argue that the Sphere recreated by gluin. All the pages of an Atlas together would only be showing the curve Spherical shape of the Space the earth is sitting in…. Flat earth in a Curved space…. Im not saying that the earth is Fla or round ,,, But most people have absolutely made up their minds what they believe very strongly, but very few have actually done their own measurements or individual thought…. Whether or not it is round or flat, People will believe what is most socially acceptable and beneficial to their own local immediate environment

    • @zwitter689
      @zwitter689 ปีที่แล้ว

      You may want to check out info on Euleriam Spirals, if you aren't already quite familiar. For instance , see www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-111.pdf

    • @bobtanto3860
      @bobtanto3860 ปีที่แล้ว

      No, that would be a waste of time for this youtuber. If people can't convince themselves through imagination that small pieces of flats can combine into a sphere, then they should try it themselves so that their power of imagination can improve.

  • @michaelhaag3367
    @michaelhaag3367 2 ปีที่แล้ว +1

    lucid explanation, thank you very much

  • @Towalak
    @Towalak 4 ปีที่แล้ว +14

    Love it, good work.

  • @slash8266
    @slash8266 ปีที่แล้ว

    So am I right to think of manifolds as spaces that can be represented by a collection of lower dimensional sets?
    We can talk about the points on a sphere using a coordinate system. But there is an advantage in "dimensionally reducing it" to a set of simpler portions/patches?

  • @philcooper279
    @philcooper279 2 ปีที่แล้ว

    A very good introduction.

  • @bobtanto3860
    @bobtanto3860 ปีที่แล้ว

    I have physics background and found this to be greatly helpful. Thanks!

  • @n00bphd84
    @n00bphd84 3 ปีที่แล้ว

    What a great fucking series! I have been building to understand optimizations on manifolds (send resources) and this has been very useful! Thank you!

  • @gpas80
    @gpas80 4 ปีที่แล้ว +1

    Clearest explanation I’ve found, thanks.

  • @dk1685
    @dk1685 6 หลายเดือนก่อน

    Very helpful. Thank you.

  • @abhishekawasthi8763
    @abhishekawasthi8763 ปีที่แล้ว

    Nicely explained 👌

  • @DrTWG
    @DrTWG 8 หลายเดือนก่อน

    Thanks for this explanation . Not sure about the septal manifold though.

  • @deepaksingh3533
    @deepaksingh3533 2 ปีที่แล้ว

    Wow , u r such a wonderful teacher.. god bless you sir...

  • @valor36az
    @valor36az 4 ปีที่แล้ว +1

    Excellent video

  • @rishabhgoenka9686
    @rishabhgoenka9686 2 ปีที่แล้ว

    Thank you so much, amazing video

  • @vimwik
    @vimwik 4 ปีที่แล้ว +1

    Thankyou for clear demonstration of what a manifold is.

  • @xDDeeDee
    @xDDeeDee 3 ปีที่แล้ว +1

    Exquisite explanation, thank you :)

  • @mathscholor
    @mathscholor 3 ปีที่แล้ว +1

    Love you Bro!

  • @BanMidouSan
    @BanMidouSan 4 ปีที่แล้ว +4

    Thanks a lot!
    Saludos desde México.

  • @zwitter689
    @zwitter689 3 ปีที่แล้ว

    Nice job with this, I like your style of explaining a difficult subject.

    • @seanriopel3132
      @seanriopel3132 ปีที่แล้ว

      It can be extremely difficult. The intelligence it takes to understand this stuff puts people on a different level than your average person where basic communication becomes difficult. People like this remind me of Feynman. Absolutely brilliant but it was something he had to work very hard at and never lost his ability to explain things to us mere mortals.

    • @zwitter689
      @zwitter689 ปีที่แล้ว

      @@seanriopel3132 Wholeheartedly agree with you, Sean. In addition, it takes a good level of intelligence to appreciate the difficulty you referenced and I am stronglyinclined to think that's something you have and/or exceed.

  • @camerontankersley3184
    @camerontankersley3184 4 ปีที่แล้ว +1

    This video is amazing, thank you so much

  • @garythomas4936
    @garythomas4936 4 ปีที่แล้ว

    Excellent explanation.

  • @h.h.c466
    @h.h.c466 2 ปีที่แล้ว

    The distortions will carry over in the reconstructed manifold so it will be not exactly the same we began with or still?

  • @pinklady7184
    @pinklady7184 3 ปีที่แล้ว

    This is my first day of learning manifolds. As 3D artist self-studying maths & physics, I understand your tutorial.
    I have just checked out homeomorphism, homoemorphic topology, and suchlikes. I have just subscribed.

    • @WHYBmaths
      @WHYBmaths  3 ปีที่แล้ว +1

      Thank you! As someone who also dabbles in 3D art I'm pleased my videos can help people from this field also! I was surprised quite how much theory is involved in 3d modelling, UV vector fields, normal maps and of course topology/homotopy/homology in general, all great stuff to learn about for modelling! Glad you finding the videos helpful!

  • @elir7184
    @elir7184 4 ปีที่แล้ว +3

    So, would it be accurate to say that a manifold is simply any topological "shape", of any dimension, that can be mapped onto a 2d chart? Or otherwise rendered into a congruent system of coordinates?
    Does a manifold become a manifold only when it is mapped?
    Also,
    Can a space itself, without a "shape" within it be considered a manifold?

    • @WHYBmaths
      @WHYBmaths  4 ปีที่แล้ว +7

      Essentially yes, although be careful since topological spaces have no notion of `shape' - this is extra geometrical structure that is only be defined once a topological space has been realised as a manifold, and then that manifold given a particular geometry. For example, the sphere S^2 is abstract and topological, it can be mapped for example using spherical coordinates, but this still has no notion of `shape' other than our pre-conceived notions of sphericity. The sphere can then be embedded into R^3 given a `shape' (by defining its extrinsic curvature - see my Einstein-Cartan introduction videos) to produce for example the round sphere (or any other ellipsoid). In answer to your last question yes, because essentially all manifolds have no intrinsic shape until extra geometric structure (distances and curvature) are defined on the manifold. At this point, a manifold is just a slightly more concrete realisation of a topological space; which uses sets of numbers as coordinates to label the points of the totally abstract topological space.
      Also note an N-dimensional manifold would map to an N-dimensional chart.
      Yes a manifold only becomes a manifold when producing a set of charts (and showing they are consistent).

  • @gansx8390
    @gansx8390 4 ปีที่แล้ว +1

    Very intuitive! TBH I didn't get it at first. I checked some videos about topology then came back and I suddenly understand all these stuff.

  • @kanefoster8780
    @kanefoster8780 4 ปีที่แล้ว +1

    Great vid, ta lad

  • @loden5677
    @loden5677 2 ปีที่แล้ว

    This really helped me gain an insight into elementary topology, thank you!!! If you have any book / course recommendations (or even vids/reading) please let me know :)))

  • @cosmophilosophyandscience1674
    @cosmophilosophyandscience1674 4 ปีที่แล้ว +2

    Thanks sir, from india 😊

  • @ameerhamza4816
    @ameerhamza4816 4 ปีที่แล้ว +5

    that was very helpful

  • @risussardoni-s2j
    @risussardoni-s2j 4 ปีที่แล้ว

    The description of a manifold starts at #6:50.

  • @seminkwak
    @seminkwak 4 ปีที่แล้ว

    Amazing explanation and definitions!

  • @anthonyh694
    @anthonyh694 4 ปีที่แล้ว

    Very clear explanation, thank you

  • @anonymous.youtuber
    @anonymous.youtuber 3 ปีที่แล้ว

    Thank you so much for your clear explanation. 🙏🏻

  • @dimzog
    @dimzog 3 ปีที่แล้ว

    Exceptional, thank you sir!

  • @igboukwu
    @igboukwu 2 ปีที่แล้ว

    Thank you so much.

  • @saadijalal3877
    @saadijalal3877 2 ปีที่แล้ว

    Excellent

  • @1991acgs
    @1991acgs ปีที่แล้ว

    Question: why is the sphere S2 if it is placed in R3?

  • @Henry-yr2hn
    @Henry-yr2hn 3 ปีที่แล้ว

    nice work

  • @YazdaniBah
    @YazdaniBah 3 ปีที่แล้ว

    Pretty good easy and understandable

  • @krokenstiv8777
    @krokenstiv8777 2 ปีที่แล้ว

    what are the applications of manifolds in physics?

  • @Abhijitdas8710
    @Abhijitdas8710 2 ปีที่แล้ว

    Can you help me with a question...-
    * How can i justify a circle is intrinsically a flat manifold??

  • @TheAIEpiphany
    @TheAIEpiphany 4 ปีที่แล้ว +3

    Earth is actually a geoid if we are trying to be rigorous :P which we clearly aren't. Thanks for the video!

    • @soccerbels7947
      @soccerbels7947 2 ปีที่แล้ว +1

      Actually its an flat paper

  • @csirnetiitjammathematics7888
    @csirnetiitjammathematics7888 4 ปีที่แล้ว

    Amazing pls upload more videos on manifolds

  • @davebowman1968
    @davebowman1968 3 ปีที่แล้ว

    Thank you so much!!!!!

  • @marinajacobo3550
    @marinajacobo3550 4 ปีที่แล้ว

    This is awesome. Thank yo so much.

  • @monoman4083
    @monoman4083 5 หลายเดือนก่อน

    good vid...

  • @johnhammer8668
    @johnhammer8668 2 ปีที่แล้ว

    what is the data type of elements in S1 if it is not points (real numbers) ?

  • @ChezzyKnytt
    @ChezzyKnytt 2 ปีที่แล้ว

    This is very useful, thanks. Based on this, can someone please explain to me what an orbifold is? Or do I need more information before I can understand what that is?

  • @oxhb
    @oxhb 2 ปีที่แล้ว

    for a layperson why is a torus in R2 and not R3 space?

  • @joefuentes2977
    @joefuentes2977 3 ปีที่แล้ว

    Earth is by no means a sphere! Imagine how many underground subways we made in addition to the natural holes that were always around!

  • @ckarcher4504
    @ckarcher4504 3 ปีที่แล้ว

    thank you very much!

  • @蔡小宣-l8e
    @蔡小宣-l8e ปีที่แล้ว

    Thank you! 谢谢!

  • @mateusmachadofotografia8554
    @mateusmachadofotografia8554 3 ปีที่แล้ว

    Nice!

  • @Goldslate73
    @Goldslate73 2 ปีที่แล้ว

    Are mammals equivalent to a donut? (I'm pointing towards the digestive system since every mammalian body practically has a long and complex hole through it.) Just a thought.

  • @phatdo7657
    @phatdo7657 4 ปีที่แล้ว

    I hope you are my professor

  • @mukilraj9855
    @mukilraj9855 3 ปีที่แล้ว

    Lovely

  • @onlineclasses6544
    @onlineclasses6544 4 ปีที่แล้ว

    Really good from India

  • @jaeimp
    @jaeimp 3 ปีที่แล้ว

    You did a great job at giving the intuition of manifolds, but it struck me as counter-intuitive that you kept referring to the terrestrial globe as "abstract" topological space. In what sense is it 'abstract'?

  • @QuinnYouTube
    @QuinnYouTube ปีที่แล้ว

    thanks

  • @hyperbolicandivote
    @hyperbolicandivote 2 ปีที่แล้ว

    Consise explanations, thanks.

  • @farhanrafid8584
    @farhanrafid8584 4 ปีที่แล้ว +2

    i see myself on 8:26 (Bangladesh)

  • @websurfer352
    @websurfer352 ปีที่แล้ว

    You could make your lesson more graspable by precisely defining some terms you employ?? For instance when you refer to an abstract topological manifold, I believe you mean that since the actual surface of the globe consists of real locations on the globe and since the topological manifold which is the 2-dimensional surface of the globe consists of points which are innumerable and cannot be enumerated since they are a continuum then yes the idea of it as a topological manifold would be abstract!! But most students when faced with such a term which they are unable to define precisely in their minds get somewhat uprooted in their thought processes and from that point on remain in bewilderment as to the actual meaning of the term!! That is what happens when an imprecisely defined idea comes which you need to work on in subsequent thinking.

  • @renatoaraujo6108
    @renatoaraujo6108 3 ปีที่แล้ว

    I never felt so humiliated

  • @BeMusicalHarmonica
    @BeMusicalHarmonica 3 ปีที่แล้ว +1

    Why the nose ring?

    • @WHYBmaths
      @WHYBmaths  3 ปีที่แล้ว +3

      ¯\_(ツ)_/¯

  • @Goldslate73
    @Goldslate73 2 ปีที่แล้ว

    3:59
    Mr. Bean's potato.

  • @aizaimran947
    @aizaimran947 4 ปีที่แล้ว

    cute dog haha

  • @joefuentes2977
    @joefuentes2977 3 ปีที่แล้ว

    Ha! I knew flat earthers were right!

  • @Kali_Domesticated
    @Kali_Domesticated 3 ปีที่แล้ว

    Wherenis jack

  • @loriclark505
    @loriclark505 4 ปีที่แล้ว +1

    okay so there is a bible verse about the manifold wisdom of God,what does that mean?

  • @CannabinatedFantasy
    @CannabinatedFantasy 2 ปีที่แล้ว

    try to be less distracting and get a good setup

  • @manaoharsam4211
    @manaoharsam4211 ปีที่แล้ว +1

    A very good introduction.

  • @alijoueizadeh2896
    @alijoueizadeh2896 2 ปีที่แล้ว

    Thank you!