Derivative equals surface area

แชร์
ฝัง
  • เผยแพร่เมื่อ 16 ม.ค. 2025

ความคิดเห็น • 50

  • @nedmerrill5705
    @nedmerrill5705 3 ปีที่แล้ว +63

    It's always fun and satisfying when things cancel out. "It blows up; it's quite nice." In my calc 1 class, things never cancelled out, and the only thing that blew up was the scribbling on my homework paper.

    • @theproofessayist8441
      @theproofessayist8441 3 ปีที่แล้ว +7

      There's a Stanford professor for signal processing who literally gave out an evil laugh before saying this all integrates to 0.

  • @MrdreamboyGaming
    @MrdreamboyGaming 3 ปีที่แล้ว +1

    Almost shed a tear :))))) wonderful result

  • @leonilsonnunes3755
    @leonilsonnunes3755 3 ปีที่แล้ว +11

    It's always a pleasure to watch your videos Dr Peyam. It's like I always were in my Calculus class in the uni. ☺️

  • @perappelgren948
    @perappelgren948 3 ปีที่แล้ว +3

    That love and hate of separation of variables is sooo to the point! 👍👍 Great vid again, Dr. P!!

  • @theproofessayist8441
    @theproofessayist8441 3 ปีที่แล้ว +30

    I like seeing \sqrt(2/\pi). Seen these normalization constants for the infinite square well problem in quantum mechanics before. At this point though I broke up physics and married math instead tbh!

    • @tomctutor
      @tomctutor 3 ปีที่แล้ว +2

      Cheat, hope you have to pay back physics the alimony for your betrayal.

  • @NonTwinBrothers
    @NonTwinBrothers 3 ปีที่แล้ว +1

    Amazing!!

  • @arturb2996
    @arturb2996 3 ปีที่แล้ว +9

    Since the video "Derivative = Arch Length" i've been trying to find a curve where the Curvature = Arch lenght (k(t) = s(t)), but my calculus skills seem to be lacking. I've found a article that shows a curve where its curvature = torsion = archlenght. The derivation uses exponentials of matrixes. I couldn't understand =/

  • @chessematics
    @chessematics 3 ปีที่แล้ว +4

    8:35 Dr. Peyam sort of debunking u-sub and using the variable u here as well-
    "I play on both sides and thus am the happiest youtuber ever."
    Alle gut sire.

  • @drhubblebubble7
    @drhubblebubble7 3 ปีที่แล้ว +7

    An integral more moist than a tres leches cake.

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +2

      I love tres leches omg

  • @dizzyd7315
    @dizzyd7315 3 ปีที่แล้ว +10

    I'm only in high school so I don't understand any of this, but you do which makes me happy

    • @FleuveAlphee
      @FleuveAlphee 3 ปีที่แล้ว +2

      Persevere and you'll get there pretty soon.

    • @johntiloshvilli
      @johntiloshvilli ปีที่แล้ว +1

      The integral represents a surface of revolution. That is why there is a 2pi.

  • @alvarezjulio3800
    @alvarezjulio3800 3 ปีที่แล้ว +2

    Dr.Peyam: this video was beautiful!

  • @oliverwalser284
    @oliverwalser284 3 ปีที่แล้ว +1

    Insane video love it

  • @The1RandomFool
    @The1RandomFool 3 ปีที่แล้ว +5

    That was a good differential equation.

  • @richardaversa7128
    @richardaversa7128 3 ปีที่แล้ว

    Wow that trig substitution simplification really was miraculous

  • @ChefSalad
    @ChefSalad 3 ปีที่แล้ว +3

    This reminds me of my favorite integral: ∫ tan(x)√(sec⁴(x)+1)dx. You solve it using a double substitution: tan(u)=sec²(x), and another trig-based substitution after you simplify, some partial fractions and then back substitute, and it's totally solved. WolframAlpha takes a crap trying solve it and gives up, but using these (somewhat) standard techniques, you can solve it with a bit effort.

    • @onradioactivewaves
      @onradioactivewaves 2 ปีที่แล้ว

      I wonder if Mathematica would do better. I used that in school 20 years ago... but then later it was all Wolfram. I heard that Mathematica had a huge list of integral tables they used, which sadly, were proprietary 😧..its truly sad times to see so much bs false knowledge in science, e.g. the medical industry, while real knowledge is hoarded in secret as proprietary.

    • @ChefSalad
      @ChefSalad 2 ปีที่แล้ว

      @@onradioactivewaves It's possible that Mathematica would do better; it does sometimes, but mainly because WolframAlpha's parser isn't as good as using the Wolfram language with Mathematica. (If you weren't aware, Mathematica is made by Wolfram.)

  • @kuldeepnegi2939
    @kuldeepnegi2939 3 ปีที่แล้ว +3

    Sir,can u plz make a video on differentiation of matrix

  • @MDExplainsx86
    @MDExplainsx86 3 ปีที่แล้ว +3

    That’s wonderful 👏💙,Could you make a video about how you became a mathematician? That’s would be very helpful for me.

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +3

      Check out the interview on my channel

    • @meroepiankhy183
      @meroepiankhy183 3 ปีที่แล้ว +2

      If I remember : High School in Austria at the French High School, then a Ph D in US University. Dr Peyam speaks french, german, english and farsi. A genius man

    • @maxwellsequation4887
      @maxwellsequation4887 3 ปีที่แล้ว +1

      @@meroepiankhy183 what!? So many languages

    • @maxwellsequation4887
      @maxwellsequation4887 3 ปีที่แล้ว +1

      @@meroepiankhy183 i can only speak in English and Hindi. Dr Petam is very smart!

  • @algorithminc.8850
    @algorithminc.8850 3 ปีที่แล้ว +2

    Merits on this one surely equals a caramel flan. Cheers.

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +1

      Thank you!!!

  • @slavinojunepri7648
    @slavinojunepri7648 ปีที่แล้ว

    Nice solution to a hard problem

  • @weonlygoupfromhere7369
    @weonlygoupfromhere7369 3 ปีที่แล้ว

    "Spicy Special" I LITERALLY DIEDDDD

  • @pierreabbat6157
    @pierreabbat6157 3 ปีที่แล้ว +5

    Secant you shall find.

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      😂😂

  • @dalisabe62
    @dalisabe62 2 ปีที่แล้ว

    Problem with differential equations is trying to find a grand theory for solutions, but there is none. Solutions are very specific and possible under certain conditions (initial and boundary) as in this example. Off the hat, to find a function whose derivative is equal to the surface area of the function is the volume of the sphere. f = V = 4/3 pi r^3. f’(V) = A = 4 pi r^2.

  • @kuldeepnegi2939
    @kuldeepnegi2939 3 ปีที่แล้ว

    Thanks sir

  • @iabervon
    @iabervon 3 ปีที่แล้ว

    Next question is whether you can adjust it to include the surface areas of the ends.

  • @_DD_15
    @_DD_15 3 ปีที่แล้ว

    How do you know you need to set f(0)= the value you set? Do you think it would work with something else? And what's the logic behind such choice. It's a nice video btw 👍🏻

  • @nicolascamargo8339
    @nicolascamargo8339 ปีที่แล้ว

    Wow genial

  • @worldOFfans
    @worldOFfans 3 ปีที่แล้ว

    The men who overcome the machine

  • @vashon100
    @vashon100 2 ปีที่แล้ว

    I thought this would lead us to a sphere.

  • @moodangelatx6580
    @moodangelatx6580 10 หลายเดือนก่อน

  • @PackSciences
    @PackSciences 3 ปีที่แล้ว

    We are looking to check whether f(x) = sqrt(2/pi) / cos(sqrt(2pi) x) satisfies f'(x) = int_0^x 2 pi f(t) sqrt(f'(t)²+1) dt
    For confort, u = sqrt(2pi) x
    f(x) = sqrt(2/pi) / cos(u) = C1 / cos(u)
    f'(x) = 2 tan(u) / cos(u) (I note f'(x) as "the derivative of f with respect to x, expressed as a function of u").
    There is no simplification of f(t) sqrt(f'(t)²+1) nor sqrt(f'(t)²+1)
    Although the expression is not a rational fraction of sinus and cosinus, I use Bioche rules to have a hint to what change of variable to perform.
    w(x) = f(t) sqrt(f'(t)²+1)
    w(-x) = w(x)
    Hence, we pick v = cos(u)
    dv = - sin(u) du = - sqrt(1-v²) du
    f(x) = C1 / v
    f'(x) = 2 sqrt(1-v²) / v²
    f'²(x) = 4/v^4 - 4/v²
    sqrt(f'²(x) + 1) = 1/v^2 sqrt(4 - v² + v^4)
    sqrt(f'²(x) + 1) f(x) du = -sqrt(4 - v² + v^4) /(v^3*sqrt(1-v²)) dv
    This method does not seem successful.
    We try v = tan(u/2)
    f(x) = C1 / cos(u) = C1 (1+v²)/(1-v²)
    f'(x) = 2 tan(u) / cos(u) = 4 v*(1+v²) / (1-v²)²
    f'(x)² = 16 v² (1+v²)² / (1-v²)^4
    sqrt(f'² + 1)f(t) = C1 (1+v²)/(1-v²) sqrt(1+ 16 v² (1+v²)² / (1-v²)^4)
    By the magic of Wolfram Alpha, this equates:
    - C1(v² + 1)(v^4+6v²+1)/(v²-1)^3
    By the magic of Wolfram Alpha, this has an antiderivative that conveniently simplifies for reals noted A:
    A = 4 C1 arctanh(x) - C1 x(x^4 - 8 x² + 3)/(x²-1)²
    The lower bound x = 0 becomes v = tan(u/2) = tan(sqrt(pi/2)) = C2
    The upper bound tan(sqrt(pi/2)x).
    B = 2 pi [A]_C2^tan(sqrt(pi/2)x)
    B = 8 pi C1 arctanh(tan(sqrt(pi/2)x) - 8 pi C1 arctanh(C2) + right junk
    For the right junk, I'll use the fact that x(x^4 - 8 x² + 3)/(x²-1)² with x = tan(u) gives:
    1/2 (2 cos(2u) + 3 cos(4u) + 1) tan(u) sec²(2u)
    I'll set C3 = sqrt(pi/2)
    right junk = pi C1 (2 cos(2C3 x) + 3 cos(4 C3 x) + 1) tan(C3 x) / cos²(C3 x) - pi C1 (2 cos(2C3 C2) + 3 cos(4 C3 C2) + 1) tan(C3 C2) / cos²(C3 C2)
    And then I give up because it doesn't seem to lead anywhere

  • @petervanderwaart1138
    @petervanderwaart1138 2 ปีที่แล้ว

    On to derivative = volume.

  • @MathSolvingChannel
    @MathSolvingChannel 3 ปีที่แล้ว

    nice problem~

  • @livingcodex9878
    @livingcodex9878 3 ปีที่แล้ว +2

    おはようございます。

  • @LarryRiedel
    @LarryRiedel 3 ปีที่แล้ว

    WolframAlpha should have asked why do you want to do this

  • @pashupatinathdutta4648
    @pashupatinathdutta4648 3 ปีที่แล้ว

    Sir, please find the general solution of y"-5y'+6y=2e^x+6x-5.Regards.

    • @Errenium
      @Errenium 3 ปีที่แล้ว +1

      looks like a job for wolfram alpha

    • @vinlebo88
      @vinlebo88 2 ปีที่แล้ว

      n+eⁿ