TIFR 2021 Mathematics Real Analysis Solution | TIFR 2021 Maths Q.No 04 Solution | TIFR 2021 Solution

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 พ.ย. 2024

ความคิดเห็น • 3

  • @tanishsharma4202
    @tanishsharma4202 2 หลายเดือนก่อน

    This could be written as cot (2x) = x + 1/x
    And for x> 0. x + 1/x > 1
    And observing the nature of both the graphs we can see they intersect at countably infinite points .

  • @darpan6882
    @darpan6882 2 หลายเดือนก่อน

    What is the idea behind assuming this function sir!

  • @speakingsarcasm9014
    @speakingsarcasm9014 2 หลายเดือนก่อน

    My attempt:
    We are trying to find zeroes of the function f(x)=(1+x^2)*tan(2x) - x.
    f(pi/4 +) = - infiinty.
    f(3pi/4 -) = + infinity.
    So there must be a root of f in the interval (pi/4, 3pi/4) using intermediate value property of f on (pi/4, 3pi/4).
    I am not sure how to show that there is exactly one root in (pi/4, 3pi/4).
    I think requires the results on differentiability...