Finding Modular Inverses

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 ม.ค. 2025

ความคิดเห็น • 63

  • @HomoSiliconiens
    @HomoSiliconiens 7 ปีที่แล้ว +7

    Thank you again. You truly explain the concept of multiplicative inverse.

  • @donkeenum302
    @donkeenum302 6 ปีที่แล้ว +10

    You are amazing for this video. Completely changed how I solve these problems and makes it so much simpler than the Extended Euclidean Algrotihmn

    • @jenycek2222
      @jenycek2222 4 หลายเดือนก่อน

      my words, this is an awesome teacher

  • @Jiglo
    @Jiglo 6 ปีที่แล้ว +71

    I still didn't understand it.

    • @rolandgerges3741
      @rolandgerges3741 5 ปีที่แล้ว

      you will never do xD

    • @joeynavarro4528
      @joeynavarro4528 5 ปีที่แล้ว +4

      You may not need this information now; however, if you are still confused :
      Here is an easy way of finding the inverse ☺:
      Below we mod 1 through 5 by adding 19 each step:
      1→ 2 → 3 → 4 → 5
      1 ≡ 20 ≡ 39 ≡ 58 ≡ 77
      Then we take the result from the 5th computation and divide it by the modulo
      (19)
      Which gives us the multiplicative inverse solution of 4 (or quotient):
      77 ÷ 19 = 4 ← [this is the quotient] • 19 + 1
      Therefore; 5^-1 ≡ 4 (mod 19)
      Meaning that:
      4 • 19 = 76 [with a remainder of 1, which is the gcd]
      Thus, giving us:
      4 • 19 + 1 = 77

    • @nagavenkataprakash4837
      @nagavenkataprakash4837 4 ปีที่แล้ว +1

      @@joeynavarro4528 i am anable to understand mam

    • @karimdarwiche8392
      @karimdarwiche8392 8 วันที่ผ่านมา

      @@joeynavarro4528 I don't think that this works for other modulos.Take any of her examples and you won't find the modulo.

  • @PMe-my1td
    @PMe-my1td 2 ปีที่แล้ว +3

    Thanks! Would be even better if you had an example of large numbers e.g., 3761 = 1 mod 31363

  • @alajlan2012
    @alajlan2012 6 ปีที่แล้ว +7

    thank you very much, this tutorial exactly made me understand finding inverse!

  • @haydenbrant7919
    @haydenbrant7919 3 หลายเดือนก่อน +1

    great video. you made this very simple to understand. Thanks.

  • @CatherineWeeks
    @CatherineWeeks 8 หลายเดือนก่อน +1

    It finally clicked for me after watching this video, thank you so much

    • @cathyfrey8955
      @cathyfrey8955  8 หลายเดือนก่อน +1

      You’re welcome 😊

  • @wildernessfarming7726
    @wildernessfarming7726 3 ปีที่แล้ว +1

    The symbol with four lines at 0:20, Are you trying to symbolize congruence?
    I couldn't find this symbol in wikipedia en.wikipedia.org/wiki/Modular_arithmetic#Congruence_relation

  • @samsunnahar9175
    @samsunnahar9175 2 ปีที่แล้ว +1

    Thanks a lot for excellent and understandable lecture!! I spent several hours on google, but I could not get clear idea. Thanks a lot again.

  • @HristiyanIvanov34
    @HristiyanIvanov34 ปีที่แล้ว +1

    Thank you so muchh missssssssssssssssssssssssss

  • @Lion-Himself
    @Lion-Himself หลายเดือนก่อน +1

    you are the goat for this

  • @alinawei7010
    @alinawei7010 5 ปีที่แล้ว +2

    what is the name of this technique?

  • @kinzaiqbal9116
    @kinzaiqbal9116 5 ปีที่แล้ว +3

    what is the name of this algorithm ??
    Can you please provide its reference ?

  • @asynchrony
    @asynchrony 2 ปีที่แล้ว +4

    While this method is simple and easy to understand, when it comes to slightly larger numbers, I feel like one would still have to resort to the extended Euclidean algorithm.
    e.g. find inverse of 23 mod 59:
    23 ≡ -36 (mod 59)

  • @rajgopalpaithara1388
    @rajgopalpaithara1388 8 หลายเดือนก่อน

    Thank you so much for this mam. It really got me the clarity and these tricks are really important for everyone, exams are not easy🥲

  • @ArthurMorganFTW_RDR
    @ArthurMorganFTW_RDR 6 ปีที่แล้ว +1

    I love you and your videos sooo much.................Thank you for uploading them.

  • @user-jm7bo1ek4r
    @user-jm7bo1ek4r 6 ปีที่แล้ว +2

    Thank you soo much for this video!! Helped immensely

  • @tomori60
    @tomori60 6 ปีที่แล้ว +1

    I hope you have more videos.

  • @sakshamchhatkuli271
    @sakshamchhatkuli271 ปีที่แล้ว

    Thank you so much, it cleared all of my doubts.

  • @valeriereid2337
    @valeriereid2337 ปีที่แล้ว +1

    Excellent.

  • @diraneserges6076
    @diraneserges6076 ปีที่แล้ว

    Great Video but i have a question. 5^-1 /// 3 mod 7 , i have found 15 /// 1 mod 7
    I would like to know if the same result

  • @vrajesh6322
    @vrajesh6322 4 ปีที่แล้ว

    Perfect explanation thank you👍 please make more videos like this👍❤️💓

  • @simba7533
    @simba7533 3 ปีที่แล้ว +1

    Please, let me know the inverse of 3 modulo 7 ???
    Is it 5 or -2?
    I am confused and how to solve?

    • @wiggles7976
      @wiggles7976 2 ปีที่แล้ว

      5 = -2 mod 7. The answer is both, because 5 and -2 are the same number in this case.
      Really what's going on is when we write 5, we mean the set {...,-9,-2,5,12,...} and that set is called the equivalence class. Modular arithmetic is arithmetic on equivalence classes. For example, (using modulo 7), 5+2 really means {...,-9,-2,5,12,...} + {...,-12,-5,2,9,...} = {...,-14,-7,0,7,...}. You are adding or multiplying sets, but it's not obvious how to multiply a set with a set. It turns out you can just pick any number from a set to represent it, and do the usual arithmetic with that number. So, adding the equivalence classes of 5 and 2, we have 5+2 = 12+9 = -7 = 0 = 7 for example. It doesn't matter what representative you pick.

  • @jamesbakis6330
    @jamesbakis6330 2 หลายเดือนก่อน

    i get it but i still don't get how it working out translates to answer

  • @ahmadsultan7002
    @ahmadsultan7002 4 ปีที่แล้ว +1

    That's very clear thank you cathy

  • @NaragGerica
    @NaragGerica 3 ปีที่แล้ว

    How about if I'm looking for inverses under addition of modulo? is this technique can be applied?

  • @moutonguerrier
    @moutonguerrier 5 ปีที่แล้ว +1

    Thanks, very helpful

    • @cathyfrey8955
      @cathyfrey8955  5 ปีที่แล้ว

      you are welcome, glad it helped!

  • @H0peAnL0ve
    @H0peAnL0ve 6 ปีที่แล้ว +1

    Excellent

  • @Metasix_RO
    @Metasix_RO 2 ปีที่แล้ว

    Thank you, very easy to understand.

  • @chloeprice5407
    @chloeprice5407 3 หลายเดือนก่อน

    omggg thank you!!! you did way better than my college professor at explaining this

  • @manmohan_pundir
    @manmohan_pundir 3 ปีที่แล้ว

    Amazing trick

  • @mayssahachicha3610
    @mayssahachicha3610 4 ปีที่แล้ว

    What if it 3x=2[5] what can i do

  • @Ex-fk4nr
    @Ex-fk4nr 6 ปีที่แล้ว

    what if you have larger numbers

  • @AAnonymouSS1
    @AAnonymouSS1 ปีที่แล้ว

    Perfect ❤🎉🎉

  • @srabonbhowmik3780
    @srabonbhowmik3780 2 ปีที่แล้ว

    saved my life

  • @freetimevlogger5631
    @freetimevlogger5631 3 ปีที่แล้ว

    Thankyou mam maja aa gaya

  • @sanjanabandarajourney
    @sanjanabandarajourney 4 ปีที่แล้ว

    Thank you very much

  • @Noone-ps6tl
    @Noone-ps6tl 6 ปีที่แล้ว +1

    thanks a lot.

  • @madumerechibuzor6152
    @madumerechibuzor6152 7 ปีที่แล้ว +1

    very efficient

  • @tinkerbell6834
    @tinkerbell6834 6 ปีที่แล้ว +1

    very gooddd thankss alott

  • @Ethhix
    @Ethhix 2 ปีที่แล้ว

    THANK YOU!!

  • @ajaib1313
    @ajaib1313 4 ปีที่แล้ว +1

    Thank you!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

  • @ascyrax8507
    @ascyrax8507 3 ปีที่แล้ว

    thank u.

  • @goranburhanrashid812
    @goranburhanrashid812 5 ปีที่แล้ว +3

    What?!

  • @warrenzingwena2075
    @warrenzingwena2075 5 ปีที่แล้ว +2

    mmm not understanding

    • @joeynavarro4528
      @joeynavarro4528 5 ปีที่แล้ว

      You may not need this information now; however, if you are still confused :
      Here is an easy way of finding the inverse:
      Below we mod 1 through 5 by adding 19 each step:
      1→ 2 → 3 → 4 → 5
      1 ≡ 20 ≡ 39 ≡ 58 ≡ 77
      Then we take the result from the 5th computation and divide it by the modulo
      (19)
      Which gives us the multiplicative inverse solution of 4 (or quotient):
      77 ÷ 19 = 4 ← [this is the quotient] • 19 + 1
      Therefore; 5^-1 ≡ 4 (mod 19)
      Meaning that:
      4 • 19 = 76 [with a remainder of 1, which is the gcd]
      Thus, giving us:
      4 • 19 + 1 = 77

  • @ToanPham-wr7xe
    @ToanPham-wr7xe 6 หลายเดือนก่อน

    😮

  • @matveym9925
    @matveym9925 3 ปีที่แล้ว

    Просто спасибо

  • @Kyoz
    @Kyoz หลายเดือนก่อน

    🤍

  • @aliceiqw
    @aliceiqw 3 ปีที่แล้ว +2

    really BAD explination

    • @PersonMonkey
      @PersonMonkey 6 หลายเดือนก่อน +1

      Bro what this is good