Forbidden Division: Point At Infinity

แชร์
ฝัง
  • เผยแพร่เมื่อ 25 ธ.ค. 2024

ความคิดเห็น • 211

  • @kakarooottttt4298
    @kakarooottttt4298 หลายเดือนก่อน +336

    "No, even anime girls can't get me interested in advanced math". This is what I used to believe in

    • @blarblablarblar
      @blarblablarblar หลายเดือนก่อน +21

      The world has been shaken

    • @inutamer3658
      @inutamer3658 หลายเดือนก่อน +23

      I'm a math major and I love how thorough they are with the concepts. They really show passion on the topic

    • @guilerso7796
      @guilerso7796 หลายเดือนก่อน +8

      Math is cool actually and i hope more people discover it
      Recently it was my best discovery

    • @zawatsky
      @zawatsky หลายเดือนก่อน +2

      Метан и Тето - самые очаровательные кудрявые воки Японии.🥰Ещё Цуина Кисараги, возможно.☝😉

    • @zawatsky
      @zawatsky หลายเดือนก่อน

      @@inutamer3658 просто эти голосовые банки поддерживают эмоциональные параметры. Тебя так легко впечатлить.😏Кстати, существует зеркало этого канала на японском, там эти двое говорят по-японски, и подача несколько отличается.

  • @floofynooplz4268
    @floofynooplz4268 หลายเดือนก่อน +294

    wake up babe new zundamon’s theorem en drop

  • @APaleDot
    @APaleDot หลายเดือนก่อน +121

    "I don't really get it... but ok" is basically her catchphrase at this point.

  • @AexisRai
    @AexisRai หลายเดือนก่อน +63

    the whole Zundamon format
    is basically animated Socratic dialogues

    • @tasin2776
      @tasin2776 21 วันที่ผ่านมา +3

      In yukkuri form

  • @philkaw
    @philkaw หลายเดือนก่อน +198

    They did surgery on projective space

    • @catmacopter8545
      @catmacopter8545 หลายเดือนก่อน

      dehn surgery...

    • @math1183
      @math1183 หลายเดือนก่อน +3

      And I'm pretty sure the ratio definition is the construction of surreals?

  • @osbourn5772
    @osbourn5772 หลายเดือนก่อน +66

    Lots of advanced math here. Here's what I think I found, but correct me if I'm wrong:
    1:57 - This is a homeomorphism between the circle (also called the 1-dimensional sphere) and the projective line. A homeomorphism is (informally) an invertible function that maps close points to close points. You may have heard of homemorphisms in the joke "a mug is the same as a doughnut", and this is just another example. This particular function that converts from points on a circle to real numbers is somewhat similar to the tan function from trigonometry.
    3:24 - The concept of a point at infinity is called the one-point compactification of a topological space, although here it is being equipped with algebraic operations. The one-point compactification of the real line is called the real projective line. There's also a real projective plane, which (I think, I might be wrong) is nice for working with conic sections because things like circles, parabolas, hyperbolas, and ellipses are all actually the same thing in real projective space.
    6:04 - Defining two objects to be equal to each other is done using something called equivalence classes, and brackets [] are standard notation when dealing with equivalence classes. Here, equivalence classes are being used to define homogeneous/projective coordinates.
    12:42 - "Well-definedness" is a technical term used when defining functions on equivalence classes. When you define what equality means for a set X using equivalence classes, and you want to construct a function whose domain is X, you have to prove that the function "respects" the defined equality.
    13:43 - Adding both a positive and negative infinity gets you something called the extended real numbers, which are also useful but very much a different concept than the projective line.

  • @cdkw2
    @cdkw2 หลายเดือนก่อน +55

    13:23 me when I see higher level maths

  • @Wou_
    @Wou_ หลายเดือนก่อน +40

    You are a brilliant teacher. The whole demonstration on this video, as well as in your other ones, is incredibly easy to follow and understand even for someone like me who's always struggled with even school level math. You do a fantastic job at setting the building blocks of what concepts need to be introduced first in order to later introduce more complex concepts, and the dialogues between Zundamon and Metan have a reasonable pace and are excellently supported by the whiteboard images. Thank you for such an impressive content. Love it. 💚💜

  • @marcelmajewski5373
    @marcelmajewski5373 หลายเดือนก่อน +48

    Thanks for the explanation on why some indeterminate forms are actually indeterminate. My math teacher never showed proof why 0*∞, ∞ - ∞, or ∞ + ∞ are indeterminate. He just told us that they could be different sizes or just can't be treated like numbers. Your simple proof using ratios really showed me why they're indeterminate. These lessons are really simple and fun to watch, keep it up!

    • @fsponj
      @fsponj หลายเดือนก่อน +4

      Wait.. how is ∞ + ∞ indeterminate?

    • @MsGinko
      @MsGinko หลายเดือนก่อน +9

      @@fsponj because ∞ is not equal to +∞. Similar case (∞-∞) with the same proof:
      Let 1/0 = ∞
      ∞ + ∞ = ?
      1/0 + 1/0 =
      (1*0+1*0)/(0*0) =
      (2*1*0)/(0) =
      2*1*(0/0)
      Indeterminate.

  • @apotheosys1
    @apotheosys1 8 วันที่ผ่านมา +3

    If you're interested in this topic and including the 0/0, try the transreals introduced by anderson. It's a but like NaN in computation, but you can construct it and prove that 0/0 = 0^0 in transreals.

  • @itsbishop2285
    @itsbishop2285 หลายเดือนก่อน +20

    I highly enjoy the little part at the end where it gives you a new skill unlock

    • @allaincumming6313
      @allaincumming6313 21 วันที่ผ่านมา +1

      Life can be romanticized as if it were an RPG, :D, where you can unlock abilities or spells with experiences or studying hard

  • @Cr_nch
    @Cr_nch หลายเดือนก่อน +16

    8:06 Yes Zundamon speak your truth 🗣

  • @zacharymiller3591
    @zacharymiller3591 หลายเดือนก่อน +41

    Can't believe I made it to a video 2 mins after it dropped

  • @darkknight1105
    @darkknight1105 หลายเดือนก่อน +26

    It has always bugged me how it was impossible to divide by 0. So at one point I decided to define infinity as 1/0 just out of curiosity and ended up with the exact same results found in this video! (even if my method wasn't rigorous at all).
    It was nice seeing that I was not the only one thinking about this.
    This video made me happy today.

    • @mjay_arts4
      @mjay_arts4 หลายเดือนก่อน +2

      Cool! :D I tried defining it in such a number and found many difficulties lol

    • @Mulakulu
      @Mulakulu หลายเดือนก่อน +7

      Keep in mind, dividing by 0 and defining it to be ∞ loses some predictability and consistency in normal math. 1/0=2/0, so just multiply both sides by 0, and get 1=2. Also, for the limit as x approaches 0 from the negative side of 1/x, it approaches -∞, so getting ∞ there from the assumption that 1/0=∞ is inconsistent. That is why 1/0 is not defined by default, since it can equal anything. Tread carefully friend.

    • @mjay_arts4
      @mjay_arts4 หลายเดือนก่อน +4

      @@Mulakulu learnt it in the hard way haha

    • @aroventalmav888
      @aroventalmav888 หลายเดือนก่อน

      I had an epiphany on this topic a number of years back, based on one of the teaching methods I was shown as a child. Division is taking the numerator and breaking it into Denominator groups. By attempting to divide by zero, you are breaking the numerator into no groups. It cannot be calculated because it is erasing the numerator. Mathmaticians should really treat it identically to multiplying by zero, because the result is identical- the absence of a value.

    • @Mulakulu
      @Mulakulu หลายเดือนก่อน +1

      @@aroventalmav888 Interesting. Do you know the name of the method? It doesn't make much sense to me since zero is not the same as "no valid answer", so I'd love to know more.

  • @lucas0_03
    @lucas0_03 หลายเดือนก่อน +18

    Zundamon is better at math with each video

    • @AexisRai
      @AexisRai หลายเดือนก่อน +3

      inspirational

  • @polecat3
    @polecat3 29 วันที่ผ่านมา +4

    I love Zundamon and math, so this channel is great!

  • @livek1238
    @livek1238 หลายเดือนก่อน +45

    I need two things:
    1. Division by 0 being acceptable
    2. Zundanon and Shikoku kissing

    • @Unofficial2048tiles
      @Unofficial2048tiles หลายเดือนก่อน +2

      I don't know who the second character you mentioned is, but anyway,
      WHA-

    • @livek1238
      @livek1238 หลายเดือนก่อน +5

      @Unofficial2048tiles Shikoku is the pink-haired girl

    • @msolec2000
      @msolec2000 หลายเดือนก่อน

      @@livek1238 Her name is Metan

  • @mole2100
    @mole2100 หลายเดือนก่อน +9

    Zundamon so adorable

  • @Minty_Meeo
    @Minty_Meeo หลายเดือนก่อน +10

    YOU FOOL! YOU DIVIDED BY ZERO! YOU HAVE... uh... not doomed us after all?

  • @assassin01620
    @assassin01620 28 วันที่ผ่านมา +5

    11:46 Isn't using the equality to prove the equality "circular reasoning"?

  • @2712animefreak
    @2712animefreak 16 วันที่ผ่านมา +1

    There's also the "wheel algebra" where you also define "0/0" as another point outside the circle called the "error element", and you define every other undefined result to be equal to that term.

  • @Amonimus
    @Amonimus หลายเดือนก่อน +3

    The last year of school and first year of university mentioned something similar when introducing limits and infinity. If 1/x can be interpreted as slicing up something into small pieces and placing them into cups, then if x=inf, you'd be be to be grinding the object to such fine dust you'd be breaking elemental particles while the cups would fill the universe, and you can't have that, so x needs to be a real number. Inversely, if x=0 you're just not slicing up anything and can't continue.

  • @arpitloveen6997
    @arpitloveen6997 21 วันที่ผ่านมา +2

    Mathematicians used to ignore roots of negative numbers. Because it did not make sense, it was undefined, but now we use it everywhere.
    Maybe it's the same case with 1/0

  • @ferlywahyu342
    @ferlywahyu342 หลายเดือนก่อน +12

    (1/0) is solution for this equation 1+x=x
    This is like water in a tank that is already full. When you pour 1 liter of water into a tank that is already full with a volume of x liters, the volume of water in the tank remains x liters. I think (1/0) has its own algebraic rules

    • @carterwegler9205
      @carterwegler9205 หลายเดือนก่อน

      This is only true if you let 1/0 =♾️ and are very careful or you let 0/0 exist (which is still indeterminate even if 1/0 exists)
      1 +1/0 would become (1*0)/0 + 1/0 = 1/0
      This could become (0+1)/0=1/0
      Or:
      1 + 1/0 - 1/0 = 1/0 - 1/0
      1=0
      Oops...
      Perspective geometry is good at avoiding some of these problems but algebra quickly falls apart when indeterminate forms start creeping in

    • @ferlywahyu342
      @ferlywahyu342 หลายเดือนก่อน

      @carterwegler9205 add rules x-x=0 not aplicable for 1/0 😁

  • @Green-3c34y65vrbu
    @Green-3c34y65vrbu 21 วันที่ผ่านมา +2

    Zundamon not always understanding, but also sometimes understanding and figuring it out intuitively helps me feel like i'm doing my best to learn ^^
    thank you!!

  • @Waterwolf221
    @Waterwolf221 หลายเดือนก่อน +8

    I love zundamon

  • @brimple
    @brimple 26 วันที่ผ่านมา +1

    Thank you Zundamon and Shikoku, I'm feeling smarter already!

  • @runekaby
    @runekaby หลายเดือนก่อน +5

    これ見ると数学と英語勉強できていいな

  • @cdkw2
    @cdkw2 หลายเดือนก่อน +15

    1:55 omg animations!!!!!!!

  • @bhgtree
    @bhgtree 28 วันที่ผ่านมา +2

    My new all time fav maths channel❤❤

  • @CrazedKen
    @CrazedKen 6 วันที่ผ่านมา +3

    How tf did I get here?

  • @misti_kumro
    @misti_kumro หลายเดือนก่อน +1

    For anyone who wants to learn more, study Wheel Theory. It's basically an extension of the set of real numbers.

  • @thepro4805
    @thepro4805 หลายเดือนก่อน +2

    i was waiting for this!! i knew it was coming

  • @fSFan333
    @fSFan333 29 วันที่ผ่านมา +3

    very projective geometry approach, I remember my favourite sentence of that class back when I took it was "parabolas are also just ellipses". However, of course there are many different approaches. For example one can try to functional analysis on it, so 0\in\sigma(0_X), assuming that X is for example a banach or hilbert space. In fact, if the entire space is {0}, the 0 operator is gonna be every possible operator, because all that an operator that maps from 0 to 0 can do, is mapping to 0. So in that case, 0/0=0^(-1)(0)=0, because the operator is both surjective and injective obviously, so it has an inverse. In \doubleR, you can't find an inverse because 0 is in the residual spectrum of the 0 operator, with the 0 operators range not even close to being dense in \doubleR. You could however look at the preimage and see that 0^(-1)({0})=\doubleR, which is also why I feel uncomfortable that 1/0=\infty is the result of this video, because obviously {1}
    otinRan(0), and the 0 operator would have to map \infty to 1, so that the preimage 0^(-1)({1})={\infty}, which is a problem due to alot of reasons.
    you know, a long time ago I also studied electrical engineering, and they really don't mind at all about dividing by 0, they just do it, so maybe sometimes it's a good idea (damn, my former math faculties will hate me for bringing this up).
    I thank you for your efforts on this projective geometry approach.

  • @MakeChildrenLearn
    @MakeChildrenLearn หลายเดือนก่อน +4

    thank you for letting me break the seal

  • @TheSeiris
    @TheSeiris 19 วันที่ผ่านมา +1

    Unlike similar setup, zundamon is not a stupid apprentice but has actual good points

  • @WaddlerTheDuck
    @WaddlerTheDuck หลายเดือนก่อน +3

    Zundamon getting HEATED over 1/0 = infinity 🔥 This is UNACCEPTABLE 💢👊

    • @guilerso7796
      @guilerso7796 หลายเดือนก่อน +1

      Exactly my reaction when the screen shows my answer is wrong and i still didn't realize what my mistake was

  • @Cringemoment4045
    @Cringemoment4045 29 วันที่ผ่านมา +1

    Can I just say I love your content.

  • @worstl
    @worstl หลายเดือนก่อน +4

    I'm early to the best TH-cam channel of all time 🗣️🗣️🔥🔥🔥

  • @arceliph
    @arceliph หลายเดือนก่อน +2

    I only can hope to be a good enough Mathematician so that Zundamon can teach my work to others

  • @bankruptWoodenSandals
    @bankruptWoodenSandals 24 วันที่ผ่านมา +2

    peak education system, right here!

  • @BucketCapacity
    @BucketCapacity หลายเดือนก่อน +4

    The real projective line!

  • @asterain4828
    @asterain4828 หลายเดือนก่อน +5

    best channel

  • @empty5013
    @empty5013 หลายเดือนก่อน +13

    first they draw you in with cute voice droids
    then they force you to learn math

    • @zawatsky
      @zawatsky หลายเดือนก่อน

      При том, что глубокомысленных песен я в их исполнении не припомню. У первой "Встречайте Зунду!" наиболее знаменита, у второй - декадансы... Впрочем, ИИ-Зундамон неплохо справляется с алгебраическими задачами, а вот геометрические ей даются труднее (как всем нейросетям).

  • @IsaacDickinson-tf8sf
    @IsaacDickinson-tf8sf หลายเดือนก่อน +3

    I figured out another way to define using division by 0. We still say 1/0 is a point at infinity, just use the different perspective to define it. Just by using n/0 *0 =n and then we have to use n(1/0)(0) and get n(0/0)=n so 0/0 is one in this case. To resolve the issue with 0/0 being indeterminate, I developed congruence, where two numbers are congruent if they are a*0 and b*0 and a is equal to and congruent to b. we now set a rule that you can only multiply or divide by 0 if the two sides of the equation are congruent, i.e. will be equal after dividing or multiplying by 0. To have the congruence identities for 0, 0 is congruent to 0*1,1-1,0^1. That’s it. For Example, 1-1 is not congruent to 2-2 because it is 1(1-1) vs 2(1-1) so 1(0) vs 2(0) and 1 cannot equal 2, so you can’t divide by zero here. To learn more about this point at infinity, we can look at the negative integer factorials. (-1)!=(0!)/0=1/0, and (-2)!=((-1)!)/(-1)=(1/0)/(-1)=(1/0)(-1)=-1/0. We have to make sure now that 1/0 is not -1/0 or 1=-1 after *0. So 1/(0*(-1)) is not 1/0 so 1(0) is not-1(0). Resolved with the same thing. But we learned that-1/0 is not 1/0. Or at least they are not congruent. They still both equal the point at infinity, but won’t be the same because they are not congruent, meaning you can’t multiply by 0 here to reach a contradiction.
    A while back I proved to myself that there are no values in the negative integer factorials that are 1, by defining that a factorial would stop once a factorials value was one, showing that 1/0 could be rewritten as the product of every negative variable integer. I’ve also shown myself that if 1=2 then every number is the same number, so I know that issue. 1/0 is commonly referred to as “infinitely many” when referring to the number of Dimension D unit objects to fill a unit Dimension D+1 object because the number of points of length 0 on a line of length 1 has to be 1/0 if 0*(1/0)=1, induction does the rest.
    Vertical slope is undefined, but vertical slope of 1 unit is 1/0 slope, like on the step function. 1/0=0^(-1)
    Also in this 0^0=1 and is congruent to 1 because otherwise 0^-1 doesn’t work. That also means that 0^n is not congruent to 0^m unless n=m and n is congruent to m. Just so you know, n=m if n is congruent to m is true.
    All this does is say 1/0 is not the same as 2/0 but they are the same level of infinity, so that 1 can never equal 2, and it resolves 0^0 and 0/0 and (1/0)/(1/0) indeterminate forms by saying the true value is 1, but you need to factor back what went in to keep both sides the same.
    Yes I know that this all means n/0 - n/0 is n because n(1/0)(1-1)=n(1/0)(0)=n(0/0)=n(1)=n. Also this makes sure that the formula 1/n=(1/(n+1)) +(1/(n)(n+1)) should hold true, even for when values are 1/0, giving congruences. The only issue is x^(1/0) and we can kind of resolve this by using some diabolical notation: NAN(x)=x^(1/0) so NAN(x) ^0 is x. NAN(NAN(x))=NAN^2(x), and that to the 0 is NAN(x). That’s everything this should have to offer.

    • @IoT_
      @IoT_ หลายเดือนก่อน +1

      Hmm, it is somehow similar to the concept of Wheel Algebra, as both aim to resolve certain issues with division by zero. In Wheel Algebra, a structure is introduced where division by zero is defined without leading to contradictions like in standard arithmetic. Your approach, involving congruences and the redefinition of operations with zero, parallels this attempt to give meaning to expressions that traditionally involve undefined behavior.
      However, there are differences as well. Wheel Algebra provides a complete algebraic structure that includes a special element for handling division by zero, called "bottom" or ⊥. It avoids the indeterminate forms by treating them as a distinct entity, while your method introduces congruence rules that try to distinguish between certain forms of division by zero, specifically using factors of zero to differentiate expressions like 1/0 and -1/0.
      Additionally, your exploration of factorials and congruence to address negative integer factorials also strays into territory that Wheel Algebra doesn't directly address, focusing more on the properties of numbers as they relate to infinity, factorial behavior, and congruences. Both approaches aim to extend arithmetic beyond its usual boundaries, but your system uses more tailored rules around congruence to attempt to resolve paradoxes, whereas Wheel Algebra sticks to algebraic properties within a predefined structure.

    • @IsaacDickinson-tf8sf
      @IsaacDickinson-tf8sf หลายเดือนก่อน

      Thanks!

  • @georgeabraham7256
    @georgeabraham7256 7 วันที่ผ่านมา +1

    There's nothing to devide with. Like a stick in the river.. the stick is deviding by two.. so when you remove the stick.. the river is now one.. nothing left to do.

  • @MathewSan_
    @MathewSan_ หลายเดือนก่อน +2

    Great video 👍 you did a good explanation!

  • @cannasue
    @cannasue 28 วันที่ผ่านมา +2

    please never stop posting 😭🙏

  • @conrad5342
    @conrad5342 หลายเดือนก่อน +4

    Wasn't the Riemann's sphere a sphere placed on (0;0) and not centered there?

  • @Mr.MaccaMan
    @Mr.MaccaMan หลายเดือนก่อน +3

    thanks zundamon

  • @compositeur8455
    @compositeur8455 หลายเดือนก่อน +1

    The limit explanation for why zero is undefined is enough

  • @mandarinbot3616
    @mandarinbot3616 หลายเดือนก่อน +1

    loving this way of teaching maths

  • @aireyroblox
    @aireyroblox หลายเดือนก่อน +3

    this is actually really interesting

  • @wyboo2019
    @wyboo2019 25 วันที่ผ่านมา +2

    you can get an intuitive idea of why infty+infty doesnt work by remembering that this infinity is unsigned

    • @MsGinko
      @MsGinko 23 วันที่ผ่านมา

      1/0 + 1/0 =
      (1*0+1*0) /(0*0) =
      2*(0/0) =
      Indeterminate.
      1/x + 2/x = 3/x ?
      (1*x + 2*x)/(x*x) =
      (1+2)/(x)*(x/x) =
      (3/x)*(x/x) =
      If (x/x) = 1
      Then
      1/x + 2/x = 3/x
      Same denominador sum is true only for x≠0 because (0/0) = 1 is false.

  • @Nikkikkikkiz
    @Nikkikkikkiz 25 วันที่ผ่านมา +3

    Proof far left and far right on political compass are same

  • @irfanmuzaki6698
    @irfanmuzaki6698 หลายเดือนก่อน +5

    ずんだもん!

  • @andreiinthedesktopworld1178
    @andreiinthedesktopworld1178 หลายเดือนก่อน +1

    "you have broken the seal of division by 0".
    huh.

  • @Vengemann
    @Vengemann หลายเดือนก่อน +2

    Can you make a video on 0^0
    There's always been a thing about this stuff
    Most consider that x^0=1 so 0^0 must equal to 1
    But In different senses 0^x=0 so 0^0 =0
    Again many argue about
    0²=0^(3-1) =0^3/0 so many here consider 0/0=1 so they also conclude 0⁰=1
    But yet it has to be considered that 0^m=0^n then m must not always be equal to n
    Again
    It is sometimes true that 0^(m-l)≠0^n even if (m-l)=n
    Can you please give a intuitive or rigorous answer about that thing?

  • @robertethanbowman
    @robertethanbowman 29 วันที่ผ่านมา +1

    Ah, I just noticed that there is a bit of an Elmer Fudd softening of R's to W's in these anime girls.

  • @graviti4479
    @graviti4479 29 วันที่ผ่านมา +1

    Ох, недавно как раз изучал эту тему, и она тоже меня взбудоражила - такое вроде бы не слишком сложное действие с нанесением на окружность всех чисел - и вот мы уже смогли добавить бесконечность

  • @thebeardman7533
    @thebeardman7533 หลายเดือนก่อน +2

    In physics we use infinity as a number all the time so I used to writingx/inf = 0 that one is very common since all the the integrals must convergence

  • @basictutorialsforeveryone4247
    @basictutorialsforeveryone4247 หลายเดือนก่อน +2

    finally, i can nourish my brain again

  • @conrad5342
    @conrad5342 หลายเดือนก่อน +2

    The approach ♾️ does not have a sign sounds amazingly convincing. I am just wonder how this concept does not contradict with the two limits of exp(x).

  • @jackmehoff9957
    @jackmehoff9957 หลายเดือนก่อน +1

    I love listening to these.

  • @GVS2001
    @GVS2001 หลายเดือนก่อน +1

    Zundamon reaction is just my reaction

  • @evandrofilipe1526
    @evandrofilipe1526 หลายเดือนก่อน +2

    Edit: I guess I should explain a bit more. We still get all that cool stuff without division by 0 as long as we use basis vectors squaring to 1 and a basis vector squaring to 0.
    Why not use geometric algebra to avoid all this confusing division by 0 and division by infinity stuff honestly.
    I've done limits in a calculus class and it seems this isn't enough of a justification to define limits of 0/0

  • @SarinQ_Q
    @SarinQ_Q หลายเดือนก่อน +1

    Спасибо за работу!❤

  • @chakinether
    @chakinether 28 วันที่ผ่านมา +1

    Cool video! Love breaking maths :) That's why I also aim to define division by zero.
    But at 10:26, there is a small and crucial inconsistency. You have mentioned previously that 0/0 is prohibited, at least for this episode, but in fact, by performing regular fraction addition operation, you assume that 0/0 = 1. The output result most probably is correct. Just the proof does not necessarily confirm it.

    • @chakinether
      @chakinether 28 วันที่ผ่านมา

      Again, 11:14 is inconsistent with 9:19

    • @zunda-theorem-en
      @zunda-theorem-en  28 วันที่ผ่านมา +3

      Thank you for your comment👍
      I realize my explanation was insufficient, but please consider
      [a₁/a₂] + [b₁/b₂] := [(a₁b₂+a₂b₁)/a₂b₂]
      as the "definition" of addition.

    • @chakinether
      @chakinether 26 วันที่ผ่านมา +1

      @@zunda-theorem-en I'm looking forward to seeing other videos from you, they are interesting!

  • @quantumspark343
    @quantumspark343 หลายเดือนก่อน +1

    Beautiful channel

  • @kawaiisopiky
    @kawaiisopiky หลายเดือนก่อน +2

    there!s no way, the creator behind this is so smart to lure me with these anime girls so he can teach me math

  • @georgeabraham7256
    @georgeabraham7256 7 วันที่ผ่านมา +1

    Zero is solved by t. Anything larger than zero is part of the t series.. t0 is not because its the point "where you have not yet started" 1/0 is a "non starter" equasion.

  • @KayKay-ob6tz
    @KayKay-ob6tz 26 วันที่ผ่านมา +2

    I still dont understand why the forbidden division is not used in school or is not acceptable by some people and also does infinity times infinity is equal to zero also means that adding infinity with another infinity in infinity times right?

  • @Jae77
    @Jae77 หลายเดือนก่อน +2

    instead of sleeping early for my lectures, i am once again here watching anime girls teach math 🙂

  • @どじゃーん-u9z
    @どじゃーん-u9z 18 วันที่ผ่านมา +2

    おー遂にずんだもんも英圏進出か
    やっぱ英語圏の人間ずんだもん知らない人多いみたいだね

  • @Skarnercrystaline
    @Skarnercrystaline หลายเดือนก่อน +2

    Why does Zundamon have such thick thighs like holy shit those are cakedn

  • @GabriTell
    @GabriTell 16 วันที่ผ่านมา +1

    Don't let homies know I fw this 💀

  • @npc2164
    @npc2164 หลายเดือนก่อน +1

    Ah yes. 2 anime girls saving me from failing collage. What time to live on.

  • @brandonsaffell4100
    @brandonsaffell4100 หลายเดือนก่อน +2

    Are ee going to double back on sone of that philosophy? Can Zundamon tell me if abstract objects are real?

  • @Happy_Abe
    @Happy_Abe หลายเดือนก่อน +3

    So would 1/x be continuous on the whole real number line if we say 1/0= infinity and that positive and negative infinity are the same?

  • @pizza8725
    @pizza8725 หลายเดือนก่อน +1

    ∞+∞ tehnically equaling to 1 seems so cursed

  • @keweima5586
    @keweima5586 9 วันที่ผ่านมา +1

    This is beautiful as a calculus student

  • @FutureAIDev2015
    @FutureAIDev2015 28 วันที่ผ่านมา +1

    Calculus 1 flashbacks intensify 😂

  • @ozzi9816
    @ozzi9816 หลายเดือนก่อน +1

    Could you do something on Pollard's rho algorithm? It’s more in the realm of programming but I still find it interesting

  • @TranslucentGanon
    @TranslucentGanon 22 วันที่ผ่านมา +1

    Tldr lim 1/x when x approaches 0 is infinity but 1/0 itself is undefined

  • @Flower_The_Floral_Queen_BFB
    @Flower_The_Floral_Queen_BFB หลายเดือนก่อน +4

    Im no mathematician but the 1/0=∞ and 1/∞=0 feels weird, If we solve it (in an algebraic way) we get
    1/0=∞
    ⟹1=0•∞
    Which is 1=0???
    And the same answer to 1/∞=0
    ⟹1=0•∞
    Which is 1=0???

    • @evandrofilipe1526
      @evandrofilipe1526 หลายเดือนก่อน

      I feel the same way

    • @MsGinko
      @MsGinko หลายเดือนก่อน

      1/0=∞ ⟹ 1=0•∞ is false, because it is necessary to multiply by the factor (0/0) on the left side, which is forbidden.

    • @matitello4167
      @matitello4167 หลายเดือนก่อน +1

      Bro you just said 0/0=1, you did the process wrong

    • @APaleDot
      @APaleDot หลายเดือนก่อน

      They say in the video that 0•∞ is an indeterminant form, meaning it could be either 0 or 1 or any other number, there's no way to tell.

  • @fcolecumberri
    @fcolecumberri หลายเดือนก่อน +4

    How do you make voicevox work in english?

    • @zunda-theorem-en
      @zunda-theorem-en  หลายเดือนก่อน +2

      It needs to be combined with other tools.
      You can find videos attempting the same challenge on TH-cam👍

    • @fcolecumberri
      @fcolecumberri หลายเดือนก่อน +1

      @@zunda-theorem-en which tools?

  • @CristiYTRomania
    @CristiYTRomania 29 วันที่ผ่านมา +2

    11:00 Wait, 1/0 + 1/0 is not simply 2/0 that is 1/0 ?

    • @MsGinko
      @MsGinko 25 วันที่ผ่านมา +1

      No, because the following definition must be used:
      [ a/b ]+[ c/d ]= [(ad + bc)/(bd) ] = [ (1*0+1*0)/(0*0) ]= 2*[0/0] indeterminate.

    • @CristiYTRomania
      @CristiYTRomania 25 วันที่ผ่านมา

      @@MsGinko Ok, thank you! Thought I could write 1/0 + 1/0 = (1+1)/0 = 2/0

    • @MsGinko
      @MsGinko 25 วันที่ผ่านมา

      ​@@CristiYTRomania
      For example:
      5 + 2 = 7 (?)
      5/1+ 2/1 = 7/1
      Is right (same denominador), but:
      5/1 + 2/1 = (5*1+2*1)/(1*1)
      (5+2)* (1/1) = 7*(1/1) =7
      I have assumed that (1/1) = 1 is true,
      according to math rules.
      Now:
      1/0 + 1/0 is equal to 2/0 ? If that is true then (0/0) = 1 is also true... Can you see the contradiction?

  • @OiramTiritan
    @OiramTiritan 16 วันที่ผ่านมา +1

    And my mind blows!!

  • @Z4Cubing
    @Z4Cubing 26 วันที่ผ่านมา +2

    Proof 1/0 = Infinify:
    1 / 0.5 = 2
    1 / 0.2 = 5
    1 / 0.1 = 10
    1 / 0.01 = 100
    1 / 0.00001 = 100000
    1 / 10^-x = 10^x
    Therefore:
    1 / 0 = Infinity

  • @boium.
    @boium. หลายเดือนก่อน +1

    Wow, it's so weird hearing this in English. I was used to the Japanese voices.

  • @Kdgika
    @Kdgika 19 วันที่ผ่านมา +1

    I do have a theory
    1/0 = E
    Where, E = the Last number in N,
    N = {entire number set from 0 to +∞).
    Basically E is the final number in the infinitely long number line if we assume Infinity is a length not number.

    • @TheSeiris
      @TheSeiris 19 วันที่ผ่านมา

      Well fundamentall flawed it seems
      The definition of E inherently contains inf, therefore there’s nothing happening considering you seem to be trying to alter definition of inf

    • @Kdgika
      @Kdgika 18 วันที่ผ่านมา

      @@TheSeiris I kinda wasn’t. People say that infinity is a length not a number. So I defined E as the very last number in the infinitely long number line.

    • @Kdgika
      @Kdgika 18 วันที่ผ่านมา

      @@TheSeiris btw, have ye heard of the smolest possible number? The number that comes right after 0?
      It's defined as S =1/E . (E is explained before)
      (I might be wrong tho. I saw a video on it long ago. And that's kinda how they defined it)

  • @kodirovsshik
    @kodirovsshik หลายเดือนก่อน +1

    Is it just me or something about their voices changed since the last video?

  • @joemama-fk7qn
    @joemama-fk7qn หลายเดือนก่อน +1

    1/0 = undefined, but some people say 1/0 = +-infinity.

  • @LAICHUANYIMoe
    @LAICHUANYIMoe 2 วันที่ผ่านมา +1

    I personally think that 1/0=infinity because division is just minusing 1 time or more. For example: 27/9 ~27-9-9-9=0 .the three 9 indicates that 27/9=3. Same case: 1/0~ 1-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0………………………If you keep on , you will realise that you can divide by zero as many times as you want, but the value of the number won’t change . So, you can technically say that 1/0=infinity. Let me know your opinion😊😊❤❤🎉🎉

  • @redpacific359
    @redpacific359 หลายเดือนก่อน +2

    ah yes, the bubble thought when i was 6 🤔

  • @zawatsky
    @zawatsky หลายเดือนก่อน +1

    Уважаемые Тохоку исходят из неверных посылок. Всё же →0 и 0 - это разные величины. Ноль подразумевает отсутствие аргумента, а по определению деления: сколько раз нужно сложить аргумент с самим собой, чтобы вернуть значение. Поскольку аргумент отсутствует, вопрос некорректен, как и пресловутое изречение Карлсона: вы перестали пить коньяк по утрам, да или нет?

  • @Muhammad_Essameldeen
    @Muhammad_Essameldeen หลายเดือนก่อน +5

    Does anyone have any idea about how to make videos like that?

    • @zawatsky
      @zawatsky หลายเดือนก่อน +1

      Тебе нужны Voicepeak или Voicevox с соответствующими голосовыми банками, несколько кадров анимации персонажей, плагин LipSync 2D и любой видеоредактор, поддерживающий простую анимацию. Например, Adobe After Effects.

    • @Muhammad_Essameldeen
      @Muhammad_Essameldeen หลายเดือนก่อน

      ​@zawatsky thanks for your help but last question, what about the maths in the middle of the screen? Is it LaTex somehow or what?

    • @zawatsky
      @zawatsky หลายเดือนก่อน +1

      @@Muhammad_Essameldeen если бы презентацию делал я, то вручную, при помощи текста и фигур. Не скажу насчёт автоматики. 😎

    • @zawatsky
      @zawatsky หลายเดือนก่อน +1

      @@Muhammad_Essameldeen но, в принципе, можно сначала сделать скриншоты формул в каком-нибудь специальном редакторе (MathCad, MS Equation) с высоким контрастом, затем полученный материал поместить в проект видеоредактора, там уже задать цвет прозрачности и двигать полученные картинки.

    • @Muhammad_Essameldeen
      @Muhammad_Essameldeen หลายเดือนก่อน

      @@zawatsky thanks, I appreciate it

  • @TheWin475
    @TheWin475 หลายเดือนก่อน +4

    Hot take but Zundamon hotter ngl

  • @adamzoltan1685
    @adamzoltan1685 29 วันที่ผ่านมา +1

    No solution bc if 1/0=a then a*0=1 number holds true for that.

  • @sfglim5341
    @sfglim5341 หลายเดือนก่อน +2

    In 2d space isnt there a line at infinity and multiple points at infinity? Idk i haven’t studied projective geometry