So many factorials!!!

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ธ.ค. 2024

ความคิดเห็น • 112

  • @blackpenredpen
    @blackpenredpen 4 ปีที่แล้ว +98

    What?!!! This series has the sum in a closed form?!

    • @djvalentedochp
      @djvalentedochp 4 ปีที่แล้ว +1

      man where are your videos?

    • @VaradMahashabde
      @VaradMahashabde 4 ปีที่แล้ว

      Hello!

    • @HeyKevinYT
      @HeyKevinYT 4 ปีที่แล้ว +2

      DJ VALENTE DO CHP If you check his instagram you’ll see he got a surgery recently (appendicitis I think), so he needs time

    • @djvalentedochp
      @djvalentedochp 4 ปีที่แล้ว +1

      @@HeyKevinYT thanks for the information 👍

    • @ffggddss
      @ffggddss 4 ปีที่แล้ว +1

      Get well soon, bprp!!
      Fred

  • @jacemandt
    @jacemandt 4 ปีที่แล้ว +22

    What's so amazing about these videos is how these results at first look (to me) well beyond the ability of a mid-level college math major (that was me in college, but I never studied stuff like this), yet they frequently use just basic first-year calculus, applied creatively.

  • @anastasissfyrides2919
    @anastasissfyrides2919 4 ปีที่แล้ว +51

    13:32

  • @Manuel-pd9kf
    @Manuel-pd9kf 4 ปีที่แล้ว +30

    This video is gonna get alot of views, I can feel it

  • @williamchurcher9645
    @williamchurcher9645 4 ปีที่แล้ว +15

    Just an integration tip I thought I would share: when changing variables, you can multiply the integrand by the modulus of the derivative and make the bounds of the integral ordered, ie the smaller bound on the bottom. The reason for this: when doing change of basis in multivariable calculus, we use the modulus of the Jacobian. If you just use the one dimensional version, you get what I just described. I personally find it easier to work with, but it's up to you.

    • @OH-pc5jx
      @OH-pc5jx 4 ปีที่แล้ว +1

      Yes - unless the derivative is zero within the range, in which case you’re ✨ trouble ✨

    • @OH-pc5jx
      @OH-pc5jx 4 ปีที่แล้ว

      Usually a sign of a bad substation tho so I don’t think it comes up too often

    • @williamchurcher9645
      @williamchurcher9645 4 ปีที่แล้ว +1

      @@OH-pc5jx yes well change of basis theorem doesnt hold if the derivative is zero anywhere. I suppose you may be able to split the domain of the integral before substitution, but it may get messy ;)

    • @OH-pc5jx
      @OH-pc5jx 4 ปีที่แล้ว

      William Churcher yeah in 1D you can get around it with a bit of thought but in nD I think I’d just use a different substitution

  • @timurpryadilin8830
    @timurpryadilin8830 4 ปีที่แล้ว +3

    Very claasic video my Michael. Excellent!

  • @pikupal8996
    @pikupal8996 4 ปีที่แล้ว +21

    Sir can you do a series of lesbegue integration and measure theory , functional analysis?

    • @shanmugasundaram9688
      @shanmugasundaram9688 4 ปีที่แล้ว

      A nice convergence of summation of proper fractions.The definite integration of sine power function is mysteriously connected to the summation.Very interesting.

  • @goodplacetostop2973
    @goodplacetostop2973 4 ปีที่แล้ว +37

    28:41

    • @armanrasouli2779
      @armanrasouli2779 4 ปีที่แล้ว +4

      :)

    • @hoodedR
      @hoodedR 4 ปีที่แล้ว +1

      Woah I just realised what a long video that was

    • @nothowtung7372
      @nothowtung7372 4 ปีที่แล้ว

      username checks

    • @vaxjoaberg9452
      @vaxjoaberg9452 4 ปีที่แล้ว +5

      15:06 was not a good place to stop

  • @holyshit922
    @holyshit922 13 วันที่ผ่านมา

    If we want to do this in other direction
    1/sqrt(1-x^2) - by binomial expansion
    integrate to get arc sin(x)
    Use Cauchy product to get series for arcsin(x)/sqrt(1-x^2)
    but we would have to deal with double sum

  • @filipchris245
    @filipchris245 4 ปีที่แล้ว +9

    15:05 Nice clothing change!

  • @tobiasgorgen7592
    @tobiasgorgen7592 4 ปีที่แล้ว +42

    Michael, you have a typo in your thumbnail.
    the factorial in the thumbnail is inside the brackets

    • @sauravthegreat8533
      @sauravthegreat8533 4 ปีที่แล้ว +5

      I saw that at first and then thought “infinity, how is this video so long”

    • @ffggddss
      @ffggddss 4 ปีที่แล้ว

      There are two factorial signs in the expression in the thumbnail; one inside parentheses, the other outside. Both are correct.
      The summand is just 1/C(2n,n).
      Fred

    • @sauravthegreat8533
      @sauravthegreat8533 4 ปีที่แล้ว +4

      ffggddss no He changed the thumbnail, previously it was (2n!) which is completely different from (2n)!

    • @ffggddss
      @ffggddss 4 ปีที่แล้ว

      @@sauravthegreat8533 I see... Well that *does* make a difference.
      Fred

  • @OH-pc5jx
    @OH-pc5jx 4 ปีที่แล้ว +1

    Very nice! Wouldn’t know where to start without the hints ngl

  • @alejandrojimenez108
    @alejandrojimenez108 4 ปีที่แล้ว +3

    How did you get this? Like seriously it seems so arbitrary but boom everything works and fits in perfectly

  • @kushsinghal1998
    @kushsinghal1998 4 ปีที่แล้ว +9

    Hey I can't wait for the video on the dominated convergence theorem. I'm struggling with it quite a bit

  • @vh73sy
    @vh73sy 4 ปีที่แล้ว +2

    The result can be expressed as
    ²F¹[1,1;0.5;(1/2²)]
    F is the generalized hypergeometric function
    wolfram notation
    Hypergeometricpfq[{1,1},{0.5},0.25]

    • @jimskea224
      @jimskea224 4 ปีที่แล้ว +1

      But ²F¹ is the usual "original" (Gauss's) hypergeometric function. It's only really "generalised" if the indices are different from 2 and 1. So much so that the indices 2 and 1 are usually omitted in this case and one simply write F(1,1; 1/2;1/4)

  • @bsuperbrain
    @bsuperbrain 4 ปีที่แล้ว +2

    Beautiful. How did you find these three lemmas?

  • @shanmugasundaram9688
    @shanmugasundaram9688 4 ปีที่แล้ว

    A nice convergence of summation of proper fractions plus one.The definite integration of sine power function is mysteriously connected to the summation.Very interesting.

  • @QmcometdudeShardMaster
    @QmcometdudeShardMaster 4 ปีที่แล้ว +1

    As always, a wonderful video. Thank you for the great math content!

  • @duncankoepke7499
    @duncankoepke7499 4 ปีที่แล้ว +1

    I would love a video about the dominating convergence theorem

  • @gnomeba12
    @gnomeba12 4 ปีที่แล้ว +1

    Would love to see some videos on some of the more sensitive convergence tests like Gauss's test

  • @fmakofmako
    @fmakofmako 4 ปีที่แล้ว +1

    Yes please to the video on dominated convergeance theorem.

  • @iridium8562
    @iridium8562 4 ปีที่แล้ว +3

    19:02 but by writing 1-x^2 as sqrt(1-x^2)^2 you are assuming that x =< 1, right..?

    • @AmitBentabou
      @AmitBentabou 4 ปีที่แล้ว +1

      X=1/2

    • @demenion3521
      @demenion3521 4 ปีที่แล้ว +3

      Even from the very beginning, the condition |x|

    • @michaelempeigne3519
      @michaelempeigne3519 3 ปีที่แล้ว

      not really since the integral is from 0 to 1.

  • @VerSalieri
    @VerSalieri 4 ปีที่แล้ว

    You are starting to remind me of Sami Hamiyyee.... my favorite professor.. Thank you.

  • @ТимофейБакшеев-ь8р
    @ТимофейБакшеев-ь8р 4 ปีที่แล้ว

    Oh my God! It’s awesome! Good job

  • @sergiokorochinsky49
    @sergiokorochinsky49 3 ปีที่แล้ว

    The general case is:
    Sum[(n!)^p/(q n)!,{n,0,Infinity}]=pF(q-1)[1,1,...,1;1/q,2/q,...,(q-1)/q;q^q]
    where pFq is the Hypergeometric function.
    The particular sum in the video is 2F1[1,1;1/2;1/4]

  • @birdboat5647
    @birdboat5647 4 ปีที่แล้ว +2

    a lot of prep pays off

  • @matthias7790
    @matthias7790 4 ปีที่แล้ว +1

    27:56 was that a burp?

  • @mxminecraft9410
    @mxminecraft9410 11 หลายเดือนก่อน

    What's the second tool called
    And iis there any other way of proving it ?

  • @fartoxedm5638
    @fartoxedm5638 3 ปีที่แล้ว +2

    I think you would better mentioned that formula of infinite sum which you used is only worth for convergent sums
    of course it is arcsin so x is between -1 and 1
    however it was not really obvious

  • @jonathangrey6354
    @jonathangrey6354 4 ปีที่แล้ว

    Please a video on the dominated convergence theorem!

  • @mrflibble5717
    @mrflibble5717 4 ปีที่แล้ว

    Excellent! Michael would you do a presentation on the Dominated Convergence Theorem, also what do you recommend as a good reference for detail on it?
    rgds, Rod

  • @peytonglass745
    @peytonglass745 4 ปีที่แล้ว +1

    please do a proof of the dominated convergence theorem!!!

    • @pikupal8996
      @pikupal8996 4 ปีที่แล้ว +2

      He have also used the differentiation theorem of power series.He should also do a video of that.

  • @noway2831
    @noway2831 4 ปีที่แล้ว

    How would one approach the sum of (2k choose k) * (-4)^(-k) from k=0 to infinity? I got to the sum from the integral of e^(-x) erf(sqrt(x)) dx from x=0 to infinity. That integral has a surprisingly simple closed form, and I imagine its evaluation is quite elegant. The sum I have verified is correct, and I obtained it through the taylor series for e^x and some gamma function identities.

  • @mrmathcambodia2451
    @mrmathcambodia2451 3 ปีที่แล้ว

    So good solution, I like this video .

  • @willianmarconbicaio6125
    @willianmarconbicaio6125 4 ปีที่แล้ว +1

    Amazing!!
    Shouldn't the result be pi/9/3^0.5 + 4/3 though? I can't figure where the 2 in the numerator comes from

  • @RickyKwokMath
    @RickyKwokMath 4 ปีที่แล้ว +3

    Funny, usually when factorials appear in infinite series, e usually shows up. This time it's pi.

    • @sergiokorochinsky49
      @sergiokorochinsky49 3 ปีที่แล้ว +1

      Try the numerator without the square...
      Sum[(n!)/(2 n)!,{n,0,Infinity}]

  • @goblin5003
    @goblin5003 2 ปีที่แล้ว

    Suggestion: evaluate the same sum but instead of (2n!) in the denominator, put (2n+1)!

  • @yossefswelam265
    @yossefswelam265 4 ปีที่แล้ว

    15:02 magic

  • @nontth5355
    @nontth5355 3 ปีที่แล้ว

    Do a video about catalan number please

  • @FrankDelVecchio
    @FrankDelVecchio 2 ปีที่แล้ว

    Can you evaluate the integral log(x)/(1-x^2) from 0 to 1 by means of a contour?

  • @steve2817
    @steve2817 4 ปีที่แล้ว +10

    Factory-al.

  • @xuwei0126
    @xuwei0126 4 ปีที่แล้ว

    Hello, I want ti know how did you find those tools? Because if I have to solve this problem from nothing how can I find those tools?

  • @aswinibanerjee6261
    @aswinibanerjee6261 4 ปีที่แล้ว +9

    Write the fraction as a beta function then change the order of sum and beta integral.
    Then do the sum first (which will be an easy geometric series)
    Then do the integral

    • @geometrydashmega238
      @geometrydashmega238 4 ปีที่แล้ว

      Thank you for your comment. I thought about gamma functions at first when seeing the problem but I had forgotten about beta. I tried it as you said and indeed, a bit long to compute but very easy approach

    • @pacojacomemaura2129
      @pacojacomemaura2129 3 ปีที่แล้ว

      Very great idea! Using Beta function properties, I obtain that the general term of the series is B(n,n)*n/2. One has to be careful, because Beta funcion isn't defined in B(0,0), and is necessary to pull apart the first term, 1, from the rest of the series.
      Then, using the Beta funcion definition and Lebesgue's dominated convergence theorem, I exchange the integral symbol for the sumation symbol. Now, the series inside the integral is the derivative of a geometric series (the term is (n+1)(t(1-t))^n, from n=0 to infinity).
      This series is equal to 1/(1-t(1-t))^2 when t \in (0,1). So the initial series is equal now to 1+1/2 \int_0^1 1/(1-t(1-t))^2dt. This integral isn't funny at all, but can be done and gives the same result obtained by professor Penn.

  • @urumomaos2478
    @urumomaos2478 2 ปีที่แล้ว +1

    Me: doing the exercise
    Michael: and thats a good place to stop
    Me: okay michael senpai :3 i will stop 4 u uwu

  • @gardenmenuuu
    @gardenmenuuu 4 ปีที่แล้ว +2

    Sir its great

  • @VaradMahashabde
    @VaradMahashabde 4 ปีที่แล้ว +1

    Did anyone else notice when he changed shirts after the second tool?

  • @ramanakv3272
    @ramanakv3272 3 ปีที่แล้ว

    First definit integral can be easily derived by walleys method than induction

  • @hjdbr1094
    @hjdbr1094 4 ปีที่แล้ว +1

    Could you prove that (2n)!!/(2n-1)!!~sqrt(πn) please?

  • @rontiemens2553
    @rontiemens2553 4 ปีที่แล้ว

    In your title you forgot the rejoinder, "... so little time!!!". Seriously, you put out great content.

  • @soundsleep4119
    @soundsleep4119 ปีที่แล้ว

    Enough Sound explanation....but may I get the same series by the help of fourier series? May I get a periodic function which may help me?...eagerly waiting for your reply.... From India ♥️

  • @ramanakv3272
    @ramanakv3272 3 ปีที่แล้ว

    The teacher has to tell where term
    Wise differentiation ,integration is applicable

  • @coycatrett2303
    @coycatrett2303 4 ปีที่แล้ว +1

    Dat burp doe

  • @ffggddss
    @ffggddss 4 ปีที่แล้ว

    Remarkable result! Remarkable that you can even get a result! Especially seeing what it takes to get it!! Might I ask how you came across this result?
    2π/(9√3) + 4/3 = 1.736399858718715077909795168364923...
    Finally, kudos for your teaching style. It is really exemplary!
    Fred

  • @maxblack493
    @maxblack493 3 ปีที่แล้ว +2

    This remind me the beta function.

  • @ethanbeachy6593
    @ethanbeachy6593 4 ปีที่แล้ว

    His answer and the way I did it numerically in Matlab gives a consistent result. I wouldn't have gotten it analytically though... This is really good!

  • @vh73sy
    @vh73sy 4 ปีที่แล้ว +1

    In general
    Sum( (n!)^b / (b n)! ), n=0 to inf
    for b>=2
    can be expressed as the generalized hypergeometric function p F q
    b F b-1 [1, ... (b times) ... ,1 ; 1/b, 2/b, ... , (b-1)/b ; 1/(b^b)]

  • @nicholashernandez4367
    @nicholashernandez4367 3 ปีที่แล้ว

    Hello, I have a question. What is (319!)! ?

  • @General12th
    @General12th 2 ปีที่แล้ว

    15:06 Everything changed when the red-shirt nation attacked.

  • @fredericmonrasividiella7394
    @fredericmonrasividiella7394 4 ปีที่แล้ว

    for me it is interesting to listen to the whole demonstration one day and then (one day, two days later) go back to listening to it 1.5 times faster. complete understanding. thank you Mr. Penn!

  • @mohamedelkhmissi3504
    @mohamedelkhmissi3504 4 ปีที่แล้ว

    15:05

  • @Jack_Callcott_AU
    @Jack_Callcott_AU 2 ปีที่แล้ว

    Isn't math(s) amazing. One never knows what will turn up in series. Here we have pi again!

  • @riadsouissi
    @riadsouissi 4 ปีที่แล้ว +3

    Nice problem.
    Did it differently though (after looking at the video, there are some similarities)
    - defined sum y(x) but adding x^(2n-1) to the sequence and starting at n=1 (so our final sum = y(1)+1).
    - after some manipulation and derivation, I get a differential equation y'(4-x^2)-3xy=2 with y(0)=0
    - Using integration factor, I get in the end y(x) = 2(4-x^2)^(-3/2) * integral(sqrt(4-t^2)dt, t=0..x). Which can be integrated with simple substitution t=sin(u).
    - End result y(x) = 1/(4-x^2)^(3/2) * (4*arcsin(x/2)+x(4-x^2)^(1/2).
    Substituting x=1, I get same result.

    • @Notthatkindofdr
      @Notthatkindofdr 4 ปีที่แล้ว

      That's close to how I did it too, though your equation was slightly simpler than mine.

    • @diegohcsantos
      @diegohcsantos 2 ปีที่แล้ว

      Amazing! Could you explain how did you found this ODE? Also, why add x^(2n-1) instead of x^n?

  • @pappaflammyboi5799
    @pappaflammyboi5799 3 ปีที่แล้ว

    @Michael Penn Your answer is wrong, it's:
    pi/(6×sqrt(3)) + 4/3

  • @stedis7259
    @stedis7259 3 ปีที่แล้ว +1

    Hello Michael! Where is this problem from? Was it from a math competition?

  • @khiemngo1098
    @khiemngo1098 7 หลายเดือนก่อน

    Nice problem and thanks for sharing this video! By the way, there's a minor mistake in that the derivative of arcsin(x) should be 1/sqrt(1 - x^2).

  • @CarlosFloresP
    @CarlosFloresP ปีที่แล้ว

    13:33 burp xd

  • @jotaro6390
    @jotaro6390 4 ปีที่แล้ว

    Nice

  • @gvomet1
    @gvomet1 4 ปีที่แล้ว

    It seems so strange to obtain a sum as the result ....

  • @vh73sy
    @vh73sy 4 ปีที่แล้ว +2

    the way it's written on the post cover (2n!) is wrong, it leads to divergence. The right notation is (2n)! as it appears on the board in the video. 2 x n! is not (2n)!

  • @Walczyk
    @Walczyk 4 ปีที่แล้ว

    this one is cute, reminds me of quantum mechanics prroblems

  • @tobiasgorgen7592
    @tobiasgorgen7592 4 ปีที่แล้ว +1

    Even though the answer is a closed form. The fact that is a sum leaves me... Unfulfilled

    • @schweinmachtbree1013
      @schweinmachtbree1013 4 ปีที่แล้ว +2

      you're welcome to take a common denominator lol, unless you would also be unfulfilled by the resulting sum in the numerator xD

    • @tobiasgorgen7592
      @tobiasgorgen7592 4 ปีที่แล้ว

      @@angelmendez-rivera351 it definitely is, don't get me wrong. By the way Michael prefaced the video I expected the sum to be straight up pi or maybe pi ^ k or something. Having a closed form be it convoluted as it may be is always amazing starting with such weird sums

  • @PriyaGupta-sr1iy
    @PriyaGupta-sr1iy 4 ปีที่แล้ว

    7th comment

  • @parameshwarhazra2725
    @parameshwarhazra2725 4 ปีที่แล้ว +2

    13:33 Michael penn remain silent for 2sec straight giving respect to Chadwick Boseman

    • @parameshwarhazra2725
      @parameshwarhazra2725 4 ปีที่แล้ว

      @Adam Romanov are you Russian

    • @IoT_
      @IoT_ 4 ปีที่แล้ว

      @@parameshwarhazra2725 по-моему, нет.

    • @parameshwarhazra2725
      @parameshwarhazra2725 4 ปีที่แล้ว

      @@IoT_ what did you say please tell me in English

    • @IoT_
      @IoT_ 4 ปีที่แล้ว

      @@parameshwarhazra2725 I said, in my opinion he's not а Russian, but allegedly he knows it a bit.

    • @parameshwarhazra2725
      @parameshwarhazra2725 4 ปีที่แล้ว

      @@IoT_ oh okay