Ascent Formula Derivation Class 11 Physics | Mechanical Properties of Fluids Important Topics

แชร์
ฝัง
  • เผยแพร่เมื่อ 14 พ.ย. 2024

ความคิดเห็น • 21

  • @satoffi
    @satoffi 9 หลายเดือนก่อน +10

    Thanks is for this video now i can prove this formula!

  • @A2sirfanclub8998
    @A2sirfanclub8998 9 หลายเดือนก่อน +2

    Thanks sir❤

  • @ta__manish_
    @ta__manish_ 9 หลายเดือนก่อน +1

    Thnk u sir❤

  • @krishbharadwaj5223
    @krishbharadwaj5223 9 หลายเดือนก่อน +4

    Sir Isko exam m ese hi kark e aayenge

  • @rawskeleton876
    @rawskeleton876 7 หลายเดือนก่อน

    2S/R kahan se aya?

    • @VishalKumar-qt9em
      @VishalKumar-qt9em 7 หลายเดือนก่อน

      It is excess pressure

    • @rawskeleton876
      @rawskeleton876 7 หลายเดือนก่อน

      @@VishalKumar-qt9em Okay.. But how is it equal to 2S/R?

  • @Ronak-n6s
    @Ronak-n6s 8 หลายเดือนก่อน +4

    Mera ko nhi Aya samaj

    • @Yuvankanand
      @Yuvankanand 8 หลายเดือนก่อน +3

      To glti Teri h

    • @Ronak-n6s
      @Ronak-n6s 8 หลายเดือนก่อน

      @@Yuvankanand ok

    • @Theclipmaster695
      @Theclipmaster695 8 หลายเดือนก่อน +1

      Meh bhai ki side hu

    • @aaxammeer4020
      @aaxammeer4020 7 หลายเดือนก่อน

      Repeatedly dekho.. And write a couple of times.

  • @shivisharma-rk2dw
    @shivisharma-rk2dw 9 หลายเดือนก่อน +8

    mere ko nhi aya 😑

  • @divyanoorkaur1596
    @divyanoorkaur1596 8 หลายเดือนก่อน

    Smjh mein nhi aaya fir se 🫤🥹

  • @sniperrrryt3301
    @sniperrrryt3301 8 หลายเดือนก่อน

    Bhai kya teacher h ghnta smj nhi aya

    • @bishalkumar7800
      @bishalkumar7800 7 หลายเดือนก่อน

      Bro, pehle topic ko atche se padhke Jan ke yaha aoo.....ye derivation channel hai na ki tumko sab samjhane wala.....derivations are important for school so we come here to get a proper way . don't blame any teacher please. If you don't understand then go there are so many channels

  • @Benzene42
    @Benzene42 8 หลายเดือนก่อน +3

    Ascent formula
    Consider a capillary tube of radius r dipped in a liquid of surface tension S and density ρ. Suppose
    the liquid wets the sides of the tube. Then its meniscus will be concave. The shape of the
    meniscus of water will be nearly spherical if the capillary tube is of sufficiently narrow bore.
    As the pressure is greater on the
    concave side of a liquid surface, so
    excess of pressure at a point A just
    above the meniscus compared to point
    B just below the meniscus
    2S
    p
    R

    Where R is the radius of curvature of
    meniscus. If θ is the angle of contact
    then from right angled triangle shown
    in figure, we have
    r
    cosθ
    R
    r
    or R
    cosθ
    2Scosθ
    p
    r


     
    Due this excess pressure p, the liquid rises in the capillary tube t height h when the hydrostatic
    pressure exerted by the liquid column becomes equal to the excess pressure p. Therefore, at
    equilibrium, we have
    p hρg
    2Scosθ or hρg
    r
    2Scosθ
    or p
    rρg