Iain Murray: "Introduction to MCMC for Deep Learning"

แชร์
ฝัง
  • เผยแพร่เมื่อ 4 พ.ย. 2024

ความคิดเห็น • 7

  • @dannydk6
    @dannydk6 5 ปีที่แล้ว +4

    This has to be the clearest explanation of MCMC I could find online. Thank you!

  • @tempvariable
    @tempvariable 6 ปีที่แล้ว +7

    50:00 Auxiliary Variables
    52:00 Swendsen Wang
    55:00 Hamiltonian Monte Carlo

  • @dermitdembrot3091
    @dermitdembrot3091 2 ปีที่แล้ว

    Has anyone looked at the exercise at 16:00 ? Could it be that the right-hand side should read
    sum P* / sum Q* instead of sum w* ? Otherwise I'd have to think it through more thoroughly.

    • @muhong9636
      @muhong9636 2 ปีที่แล้ว

      From my understanding, the w* = P*/Q*. And he normalized the w* divided by sum w* making up to 1.

    • @dermitdembrot3091
      @dermitdembrot3091 2 ปีที่แล้ว

      @@muhong9636 thanks for your reply. As you say, w* = P*/Q*. Therefore sum w* = sum P*/Q*. I thought it maybe should read sum P* / sum Q* instead, but I just found out that the version in the slides makes it even easier. Here's my proof:
      1/S sum w*
      = 1/S sum P*/Q*
      -> E_Q[P*/Q*] (for S->infinity)
      = E_P[ Q/P P*/Q*]
      = E_P[ ZP/ZQ Q*/P* P*/Q*]
      = ZP/ZQ

    • @muhong9636
      @muhong9636 2 ปีที่แล้ว

      @@dermitdembrot3091 Thanks for sharing👍

  • @marcuschiu8615
    @marcuschiu8615 4 ปีที่แล้ว

    38:28 What does he mean by valid in "MCMC T is valid"? like T is a stationary distribution?