3 Applications of Taylor Series: Integrals, Limits, & Series

แชร์
ฝัง
  • เผยแพร่เมื่อ 1 ม.ค. 2025

ความคิดเห็น • 47

  • @folsomboy86tbone15
    @folsomboy86tbone15 2 ปีที่แล้ว +4

    Thank you, Professor. Your examples are very nice to have when I'm tutoring students.

  • @mikehughes6582
    @mikehughes6582 ปีที่แล้ว +1

    The best explanation I've seen.

  • @kevinpeng4059
    @kevinpeng4059 4 ปีที่แล้ว +3

    Awesome video! perfect explanation of why in the heck I learned Taylor Series

  • @kirpasingh9741
    @kirpasingh9741 ปีที่แล้ว +3

    Very helpful in solving problems of iit entrance (jee advance).

  • @nubs4life5
    @nubs4life5 3 หลายเดือนก่อน +1

    i love you. i appreciate this video more than you can ever understand. if you ever need anything, let me know.

  • @sergiolucas38
    @sergiolucas38 3 ปีที่แล้ว +10

    excellent video. in advanced math though, im struggling to understand a lot of weird taylor expansions that pop up from nowhere :)

    • @navjotsingh2251
      @navjotsingh2251 2 ปีที่แล้ว +1

      Sometimes you just need to accept the Taylor series, no matter where it appears 😅

  • @krishna8976
    @krishna8976 9 หลายเดือนก่อน

    Excellent video. Last part was explained beautifully

  • @jacobstarr9010
    @jacobstarr9010 8 หลายเดือนก่อน

    Taylor series are actually goated for doing tough limits.

  • @limchunyong6048
    @limchunyong6048 5 ปีที่แล้ว +5

    Hi Trefor, very helpful video! One question, for your example on limits at 5:00, why do the larger powers go to zero faster?

  • @shadon_official2510
    @shadon_official2510 5 ปีที่แล้ว +2

    Thanks for the video.

  • @schizoframia4874
    @schizoframia4874 2 ปีที่แล้ว +3

    Woah 🤯 he has a huge chalkboard

  • @scxry5597
    @scxry5597 6 หลายเดือนก่อน

    Also wanted to thank you, great video.

  • @imacmill
    @imacmill 3 หลายเดือนก่อน

    What does integrating integrate?

  • @douglas5260
    @douglas5260 4 ปีที่แล้ว +1

    can you please make a video on how to integrate a summation? I got a little lost at 2:08

    • @douglas5260
      @douglas5260 4 ปีที่แล้ว +4

      I think maybe I understand, you would integrate every term of the summation and sum the resulting integrals, and these are actually the terms of the new summation on the solution

    • @franzmaina3080
      @franzmaina3080 2 ปีที่แล้ว +3

      Yes the method is like that, but he forget to specify that the series converges uniformly in [0,1]. Without this hypothesis you can’t switch the integral sign with the summation sign. {Sorry for the answer after a year ;)}

    • @douglas5260
      @douglas5260 2 ปีที่แล้ว

      @@franzmaina3080 thanks!

  • @garrettgeffre1792
    @garrettgeffre1792 9 หลายเดือนก่อน +2

    Love the man’s Gusto, but it would be a lot better if he wrote it out as he was talking.

    • @DiegoHerreraNeri
      @DiegoHerreraNeri หลายเดือนก่อน

      I like it more the way he does it

  • @bubblegum-iz8zu
    @bubblegum-iz8zu 4 ปีที่แล้ว +2

    Thank you, now what if the upper limit of the integral is infinity? Could you still use Taylor series to solve it?

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว +2

      yes, of coure!

    • @carultch
      @carultch ปีที่แล้ว

      There is a way to do the full domain integral of the bell curve without infinite series, that involves squaring it, generating a 3-D bell curve, and transforming it to polar coordinates to carry it out. The coordinate transformation turns dx dy into r dr dtheta. This generates r*e^(-r^2) as the integrand, which we can solve with simple substitution. The volume of the 3D bell curve is pi, and sqrt(pi) becomes the area of the original 2-d bell curve.

  • @arandomghost8819
    @arandomghost8819 3 ปีที่แล้ว +1

    Sir when are we allowed to interchange and integral and summation?

    • @AssemblyWizard
      @AssemblyWizard 2 ปีที่แล้ว

      When it is a power series (each term is x^n multiplied by some number that doesn't depend on x, just on n) then you can always do that. Also interchanging derivative and summation.

  • @finwefingolfin7113
    @finwefingolfin7113 3 ปีที่แล้ว +2

    Great video ... but I always understood that the integral of the normal distribution curve does have a name "The Error Function" ?

    • @carultch
      @carultch ปีที่แล้ว +2

      Yes and no. The error function erf(x) is slightly different than the integral of the normal distribution curve. It is the integral of the normal distribution curve, but with a scaling constant and an asymptote at y=-1 and y=+1, that is set up this way for its applications in differential equations. For the CDF of the normal distribution, we want asymptotes at 0 and +1, so the function is shifted and scaled.
      The integral of the standard normal distribution curve in terms of erf(x) is as follows:
      integral Z(x) dx from -infinity to X = 1/2*erf(X/sqrt(2)) + 1/2
      And the integral of the base form of this function, e^(-x^2), in terms of erf is:
      1/2*sqrt(pi)*erf(x) + C

  • @crickiworld
    @crickiworld 2 ปีที่แล้ว +1

    Awesome..

  • @stevengraham9330
    @stevengraham9330 4 ปีที่แล้ว +1

    I don't get how you integrated the general term

    • @stevengraham9330
      @stevengraham9330 4 ปีที่แล้ว

      Neverrmind I didn't realize n was a constant

  • @AssemblyWizard
    @AssemblyWizard 2 ปีที่แล้ว

    I was expecting you to give the disclaimer that swapping the integral and summation isn't always allowed but it is in this case

  • @zunairaseemabkhan9934
    @zunairaseemabkhan9934 4 ปีที่แล้ว

    Application of mechlerun series are Similar to taylor??

    • @jacobwaldman9993
      @jacobwaldman9993 2 ปีที่แล้ว +1

      Yes it just when u centre around 0

  • @PhuongLe-ki7cb
    @PhuongLe-ki7cb 3 ปีที่แล้ว +1

    Great

  • @martinhazard2025
    @martinhazard2025 4 ปีที่แล้ว

    Landau symbols????

  • @duckymomo7935
    @duckymomo7935 5 ปีที่แล้ว +15

    Taylor Swift or Taylor Series?

    • @crimfan
      @crimfan 3 ปีที่แล้ว +1

      If you type "taylor" into any search bar, she shows up first.

    • @carultch
      @carultch ปีที่แล้ว +1

      "Taylor" of the Taylor Series is Brook Taylor.

  • @jayanthromale3389
    @jayanthromale3389 3 ปีที่แล้ว

    Why didn't you use the basic formula of power series in evaluating integral of e^-x^2, the derivative of e^-x^2 will change

  • @abhishekRajput-hl7zi
    @abhishekRajput-hl7zi 2 ปีที่แล้ว

    from india

  • @martinhazard2025
    @martinhazard2025 4 ปีที่แล้ว

    wrong, you must use the symbols of landau

  • @rareli6394
    @rareli6394 3 ปีที่แล้ว

    Help

  • @haywingpong5371
    @haywingpong5371 2 ปีที่แล้ว

    講嘢唔駛咁大動作嘛

  • @yopenzo
    @yopenzo 4 ปีที่แล้ว

    Mr. Bazett, Tarzan speaks better than you, that is, slowly, clearly and finally in an understandable way. Cheers, yop.