LlamaIndex Sessions: 12 RAG Pain Points and Solutions

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 พ.ย. 2024

ความคิดเห็น • 14

  • @pim8268
    @pim8268 29 วันที่ผ่านมา +1

    What a lecture. Simply amazing.

  • @DonBranson1
    @DonBranson1 8 หลายเดือนก่อน +2

    simply amazing. I liked your constructive response to a paper with a pessimistic title. Embrace your challenges and keep moving forward. Appreciate the mapping to LllamaIndex Notebooks.

  • @kenchang3456
    @kenchang3456 6 หลายเดือนก่อน

    Excellent video, and very informative. Thank you very much.

  • @kevon217
    @kevon217 8 หลายเดือนก่อน

    Excellent compilation. Super helpful.

  • @christyson4245
    @christyson4245 8 หลายเดือนก่อน

    This is brilliant! Thanks for sharing!

  • @duongkstn
    @duongkstn 8 หลายเดือนก่อน +1

    very informative, thanks !

  • @karanv293
    @karanv293 8 หลายเดือนก่อน +4

    im genuinely confused. what is the most accurate strategy to date?
    Theres so many tutorials out there , which one should I use for my use case. If you could guide me on that and then I can follow along a tutorial of somekind would be great.
    For example, i saw your posted workshop of advanced RAG with gemini.
    Should i follow that as the guide?

    • @evermorecurious91
      @evermorecurious91 8 หลายเดือนก่อน +3

      Haha. You can read the SOTA of RAG paper. This stuff keeps evolving, so you better follow one good source or be that source.

    • @karanv293
      @karanv293 8 หลายเดือนก่อน +1

      @@evermorecurious91 hahaha yeah I guess just stick with one and go with it.

  • @tecnopadre
    @tecnopadre 8 หลายเดือนก่อน +1

    Can be all this solutions implemented at once?

  • @sysadmin9396
    @sysadmin9396 8 หลายเดือนก่อน +2

    I have a python flask chatbot working hosted on AWS. Issue is all users that query the bot are getting answers from other users, in other words, it’s just one huge chat session for many users. How can I separate the sessions?

    • @utsavdavda8419
      @utsavdavda8419 21 วันที่ผ่านมา

      You can cache each users data separately by maintaining separate cache. In each session if the chatbot stores some data temporarily it should store it at the designated cache of the user.