8: Eigenvalue Method for Systems - Dissecting Differential Equations

แชร์
ฝัง
  • เผยแพร่เมื่อ 5 ต.ค. 2024
  • How to find eigenvalues: • 6: Eigenvalues: Why de...
    When we start looking at how multiple quantities change, we get systems of differential equations. What do we use for systems of equations? Linear algebra, of course!
    Full dissecting differential equations playlist: • Dissecting Differentia...
    New math videos every Monday and Friday. Subscribe to make sure you see them!

ความคิดเห็น • 71

  • @blackpenredpen
    @blackpenredpen 4 ปีที่แล้ว +173

    Believe it or not, I have forgotten this method! 😆

    • @ayitinya
      @ayitinya 2 ปีที่แล้ว +8

      Unbelievable for someone like you

    • @motherisape
      @motherisape ปีที่แล้ว

      I know right

    • @matthewsamson927
      @matthewsamson927 11 หลายเดือนก่อน +1

      Ah he's human😂😂

    • @Mathologix
      @Mathologix 7 หลายเดือนก่อน +1

      I was about to ask you to make video on this topic but I found your comment here..😂

  • @ellen128
    @ellen128 2 ปีที่แล้ว +48

    Fully understand it now. Math shouldn't be about memorizing formulas. It should be about connecting the dots, observing patterns, and summarizing patterns into shortcuts called formulas, and enjoying the thinking that goes into that process.

  • @santiagoarce5672
    @santiagoarce5672 4 ปีที่แล้ว +33

    You can really tell that there's a lot of thought put into these videos about what might be the best way of explaining something. I actually find your way of explaining stuff really helpful.

  • @RedSarGaming
    @RedSarGaming 2 ปีที่แล้ว +6

    What a great video! Short and explains everything clearly. I cannot thank you enough my guy!

  • @elischrag8436
    @elischrag8436 ปีที่แล้ว +2

    this was super helpful! Made the connection between eigenvalue/vector problems and solving differential equations much more clear.

  • @BuddyNovinski
    @BuddyNovinski 2 ปีที่แล้ว +3

    Having taken both differential equations and linear algebra a long time ago, I can see the link between the Wronskian and vectors. How I wish this young man had been my professor (in his previous life). We have the advantage of the internet, so it's much easier to learn this stuff.

  • @IntegralMoon
    @IntegralMoon 2 ปีที่แล้ว +2

    I found myself confused by MIT OCWs explanation, but this cleared it right up. Lovely work

  • @drseagull
    @drseagull 2 ปีที่แล้ว +1

    what a god, you summarised a 30 min lecture in under 10 mins

  • @tristianity8529
    @tristianity8529 5 หลายเดือนก่อน

    this is exactly the video i was in need off. thank you for a clear and consise explination!

  • @dulosalfred7522
    @dulosalfred7522 2 ปีที่แล้ว +1

    This is so informative. Thank you for a comprehensive explanation.

  • @chigbuchiamaka4852
    @chigbuchiamaka4852 ปีที่แล้ว

    This is the only video I have watched explaining the concept behind solving system of equations 😩. Thank you Sir

  • @jonnydobandliamried8094
    @jonnydobandliamried8094 2 หลายเดือนก่อน

    That was really clear. Good stuff.

  • @VietnamSteven
    @VietnamSteven ปีที่แล้ว +1

    This explanation is fantastic!!

  • @troyhernandez7277
    @troyhernandez7277 4 ปีที่แล้ว +6

    Man, I forgot my differential equations classes. Very cool method.

  • @lavatasche2806
    @lavatasche2806 2 ปีที่แล้ว +1

    Insanly well explained. Thank you

  • @Kallum
    @Kallum 3 ปีที่แล้ว +3

    This helps me so much, i have a test about linear algebra next week about eigenvalues and systems of diff. Equations, thanks a bunch

  • @paliganguly7834
    @paliganguly7834 ปีที่แล้ว

    It is really very helpful video for me, I am so impressed by your way to solution.

  • @ericyoerg4404
    @ericyoerg4404 2 ปีที่แล้ว +2

    This is really good. Just about to take my differential equations matrix methods portion test and this helped a lot with explaining the why and how. Thanks!

  • @tgeofrey
    @tgeofrey 2 ปีที่แล้ว +1

    Thank you very Much

  • @calebjlee2685
    @calebjlee2685 10 หลายเดือนก่อน

    Watching the eigenvalue formula show up was the the craziest cameo

  • @ElifArslan-l9g
    @ElifArslan-l9g 2 ปีที่แล้ว +1

    thank you so much

  • @ferhatkorkmaz11
    @ferhatkorkmaz11 2 ปีที่แล้ว +1

    great explanation!

  • @dbgsdc3913
    @dbgsdc3913 ปีที่แล้ว

    Sir , I really loveu.Hope u will contribute in mathematics in a large way,

  • @pontus_qwerty
    @pontus_qwerty 2 ปีที่แล้ว

    Exactly what I was looking for. 👏

  • @realking4918
    @realking4918 3 ปีที่แล้ว +3

    EXCELLENT VIDEO

  • @MEBTabishKazmi
    @MEBTabishKazmi 7 หลายเดือนก่อน

    Bro has the best handwriting ever

  • @sriharsharevu4316
    @sriharsharevu4316 2 ปีที่แล้ว +1

    Loved it.

  • @muwongeevanspaul9166
    @muwongeevanspaul9166 3 ปีที่แล้ว +1

    Whattttttt....you guy, u are really sweet in your maths. U are truly so good. I like your personality and the way to pause on the board and write on it. I have fully understood the concept....thanks so much.

  • @blblbl2178
    @blblbl2178 3 ปีที่แล้ว +2

    Amazing and clear explanation! Thank you.

  • @mlfacts7973
    @mlfacts7973 ปีที่แล้ว

    Great video , thank you

  • @mouadjadil4551
    @mouadjadil4551 3 ปีที่แล้ว +2

    is there any more simplification than this?? hats off bro

    • @carultch
      @carultch ปีที่แล้ว

      Yes. To find the eigenvalues, you can use lambda = m +/- sqrt(m^2 - p), to more directly find them. This only works for a 2x2 matrix, and unfortunately no such equivalent trick works for a 3x3 or anything beyond.
      The m is the mean of the two diagonal entries along the down-right diagonal.
      The p is the determinant, which is the product of the two eigenvalues.
      So for us:
      m = 1.5
      p = 2*1 - 3*4 = -10
      1.5 +/- sqrt(1.5^2 - (-10)) = 5 and -2

  • @duydangdroid
    @duydangdroid 7 หลายเดือนก่อน

    if my professor ever did this, i'd say "whoa... an easy day"

  • @arcwand
    @arcwand ปีที่แล้ว

    i love you thank you so much

  • @bigdaddie2273
    @bigdaddie2273 4 ปีที่แล้ว +1

    Thanks man

  • @ZackSussmanMusic
    @ZackSussmanMusic 4 ปีที่แล้ว +2

    awesome!!

  • @じばにゃん-w7y
    @じばにゃん-w7y 3 ปีที่แล้ว +1

    凄いわかりやすかった。ありがとうございました。

  • @mohamedmouh3949
    @mohamedmouh3949 ปีที่แล้ว

    thank you

  • @shadowbane7401
    @shadowbane7401 3 ปีที่แล้ว +1

    it is most definitely E I G E N V A LU E T I M E

  • @rodioniskhakov905
    @rodioniskhakov905 4 หลายเดือนก่อน

    3:48 I don't understand why do you say that x' = e^(rt) but not x' = e^(At). Why r = A? Or rather, why e*I = A?

  • @tonk6812
    @tonk6812 4 ปีที่แล้ว +1

    Hi...I want u to add a video for solving system of diiferntial eqns hving complex roots by using matrix exponential form....

    • @MuPrimeMath
      @MuPrimeMath  4 ปีที่แล้ว +2

      There will be a video where I solve a system with complex roots soon!

    • @tonk6812
      @tonk6812 4 ปีที่แล้ว +1

      @@MuPrimeMath ...keep on going...👍👍👍

  • @lukaskrause6022
    @lukaskrause6022 2 ปีที่แล้ว +1

    Does the superposition principle only work for homogeneous differential equations?

    • @MuPrimeMath
      @MuPrimeMath  2 ปีที่แล้ว +2

      Yes. If we add two solutions to a nonhomogeneous differential equation, the sum will not be a solution. For the nonhomogeneous case, we first find a particular solution, then add the general solution to the corresponding homogeneous equation!

    • @lukaskrause6022
      @lukaskrause6022 2 ปีที่แล้ว +1

      @@MuPrimeMath ah right. So it’s the same general solution principle thing as for differential equations that aren’t systems

  • @aijazdar7824
    @aijazdar7824 19 วันที่ผ่านมา

    But 'r' is actually 'A' SO BOTH ARE SAME, HOW U ARRIVED EIGEN VALUE EQUATION

  • @tonk6812
    @tonk6812 4 ปีที่แล้ว +1

    👍👍👍👍...nice way...

  • @wduandy
    @wduandy 4 ปีที่แล้ว +1

    Nice!

  • @TopCuber
    @TopCuber 4 ปีที่แล้ว +3

    Couldn't you just Laplace transform both equations at the start and a get a regular system of equations?

    • @MuPrimeMath
      @MuPrimeMath  4 ปีที่แล้ว +3

      Yes, that's another method for solving systems!

    • @muwongeevanspaul9166
      @muwongeevanspaul9166 3 ปีที่แล้ว +1

      He specified the method under use

    • @VndNvwYvvSvv
      @VndNvwYvvSvv 2 ปีที่แล้ว +3

      Both are good, but the reason this can be more powerful is that computers can perform vector math easily, e.g. Matlab and that can be run on superclusters, graphics cards, or specialized processors like ASICs. Solving using Laplace can be done on a computer too, but it's more costly on CPU cycles and works less often especially for complicated problems.

  • @motherisape
    @motherisape ปีที่แล้ว

    wow sir WOOOOW !

  • @wryanihad
    @wryanihad 7 หลายเดือนก่อน

    What's the name of this techniq?

  • @FelipeHenrique-yq3bu
    @FelipeHenrique-yq3bu 3 หลายเดือนก่อน

    I got the eigenvector associated to the eigenvalue -2 equal to (1, -4/3), is this okay?

    • @MuPrimeMath
      @MuPrimeMath  3 หลายเดือนก่อน

      Yes. Any scalar multiple of an eigenvector is also an eigenvector with the same eigenvalue.

  • @desmondhutchinson6095
    @desmondhutchinson6095 4 ปีที่แล้ว +2

    interesting...

  • @izu0506
    @izu0506 ปีที่แล้ว

    It will take me a year to connect the dots😂🔫

  • @dulosalfred7522
    @dulosalfred7522 2 ปีที่แล้ว

    ❤️❤️❤️❤️❤️❤️❤️❤️

  • @arushorya4597
    @arushorya4597 ปีที่แล้ว

    gas vid

  • @holyshit922
    @holyshit922 ปีที่แล้ว +1

    In russian textbook i found following method
    x' = 2x + 3y
    y' = 4x + y
    x' = 2x + 3y
    ky' = 4kx + ky
    x' + ky' = (2+4k)x + (3+k)y
    x' + ky' = (2+4k)(x+(3+k)/(2+4k)y)
    (3+k)/(2+4k) = k
    3 + k = k(2 + 4k)
    3 + k = 2k + 4k^2
    4k^2 + k - 3 = 0
    (4k - 3)(k + 1) = 0
    x' - y' = -2x +2y
    d(x - y)/dt = -2(x-y)
    d(x - y)/(x-y) = -2
    ln(x - y) = -2t+ln(C_{1})
    x - y = C_{1}exp(-2t)
    x' + 3/4y' = 5x + 15/4y
    d(x + 3/4y)/dt = 5(x+3/4y)
    d(x + 3/4y)/(x+3/4y) = 5dt
    ln(x + 3/4y) = 5t + ln(C_{2})
    x + 3/4y = C_{2}exp(5t)
    x - y = C_{1}exp(-2t)
    x + 3/4y = C_{2}exp(5t)
    3/4x - 3/4y = 3/4C_{1}exp(-2t)
    x + 3/4y = C_{2}exp(5t)
    7/4x = 3/4C_{1}exp(-2t) + C_{2}exp(5t)
    x = 3/7C_{1}exp(-2t) + 4/7C_{2}exp(5t)
    x - y = C_{1}exp(-2t)
    -(x + 3/4y = C_{2}exp(5t))
    -7/4y = C_{1}exp(-2t) - C_{2}exp(5t)
    y = -4/7C_{1}exp(-2t) + 4/7C_{2}exp(5t)
    x = 3/7C_{1}exp(-2t) + 4/7C_{2}exp(5t)
    y = -4/7C_{1}exp(-2t) + 4/7C_{2}exp(5t)
    To generalize it for more equations we need k1,k2...,k_{n-1}
    but problems may appear for repeated eigenvalues
    I dont speak russian (When i went to school it hadn't been taught. My mother didnt want to teach me)
    but this approach probably has something to do with eigenvalues and eigenvectors

  • @chewbecca9443
    @chewbecca9443 2 ปีที่แล้ว

    thanks man

  • @user21121
    @user21121 3 ปีที่แล้ว +1

    Great explanation!