[05x07] NearestNeighbors.jl: k-Nearest Neighbors, k-D Tree | Julia Supervised Machine Learning

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 พ.ย. 2024

ความคิดเห็น • 14

  • @siyisoy
    @siyisoy หลายเดือนก่อน

    Fantastic video and channel. Thanks.

  • @DrRandyDavila
    @DrRandyDavila 2 ปีที่แล้ว +9

    This is seriously my favorite TH-cam channel for Julia programming. I'm definitely going to mention this new playlist on this weeks episode of TalkJulia. Please keep it up! It's wild how much I have learned from watching these well thought out and descriptive videos made by the dabbling doggo.

    • @doggodotjl
      @doggodotjl  2 ปีที่แล้ว

      Glad you're enjoying the series and thank you for your support!

  • @JuandeJesusVenegasflores
    @JuandeJesusVenegasflores 11 หลายเดือนก่อน +2

    Excelente!!!, saludos desde México, sigue así por favor

    • @doggodotjl
      @doggodotjl  11 หลายเดือนก่อน

      ¡Saludos! ¡Gracias por ver!

  • @ProfRodolfo
    @ProfRodolfo 2 ปีที่แล้ว +1

    Here I am once again to thank you for sharing your knowledge.
    I tested k-NN for regression and the results also were good.
    Thank you!

    • @doggodotjl
      @doggodotjl  2 ปีที่แล้ว

      Cool! Good to hear you're getting good results!

  • @ryxjxyxbx6650
    @ryxjxyxbx6650 2 ปีที่แล้ว +1

    very good tutorial

    • @doggodotjl
      @doggodotjl  2 ปีที่แล้ว

      Thanks for watching!

  • @u2coldplay844
    @u2coldplay844 2 ปีที่แล้ว

    As clear as usual!
    It would be very helpful if you can do some videos about using PyCall, Conda.jl, and PythonCall.jl, CondaPkg.jl. In practical application we need to use some python packages or scripts from papers. For example, alphafold, pytorch geometric, rdkit etc. Thank you!

  • @ericstrobel2800
    @ericstrobel2800 2 ปีที่แล้ว +2

    Hey! Is there any benefit to weighting the votes by the distances? Conceptually, a point farther away from the test point should be 'less related' to the test point.

    • @doggodotjl
      @doggodotjl  2 ปีที่แล้ว +2

      Yes, there are a couple of methods to determine the Class. One method is to use the "majority voting" method which is shown in this tutorial. Another common method is to use "distance weighting" which assigns a higher weight to shorter distances. I haven't actually tried it with the NearestNeighbors.jl package so I can't vouch for how well it works. The Distances.jl package also contains a list of various "weighted" distance metrics that it supports, including WeightedEuclidean and WeightedSqEuclidean, among others.

  • @winstonacousticstudio445
    @winstonacousticstudio445 ปีที่แล้ว

    How did you get that type linting after the variables or expressions you have declared? Such as "100x2 Matrix{Float64}". Cheers

    • @doggodotjl
      @doggodotjl  ปีที่แล้ว +1

      In VS Code, go to Settings > Julia: Execution: Result Type. In the drop-down menu, select either "inline" or "both". After you do that, place your cursor at the end of a line of code and hit Shift+Enter.