SLAM Course - 06 - Unscented Kalman Filter (2013/14; Cyrill Stachniss)

แชร์
ฝัง

ความคิดเห็น • 45

  • @MSApro123
    @MSApro123 10 ปีที่แล้ว +4

    Professor, you know what! Attach exercise materials, course notes, etc... and this would be the greatest course in the web.

    • @shoumikghosal
      @shoumikghosal 8 ปีที่แล้ว

      +Msa Chehadah Couldn't agree more!

    • @shoumikghosal
      @shoumikghosal 8 ปีที่แล้ว +10

      +Msa Chehadah Oh look what I just found: ais.informatik.uni-freiburg.de/teaching/ws13/mapping/

    • @manuntn08
      @manuntn08 7 ปีที่แล้ว +2

      Do u have corrections for these exercises ?

    • @UrbanPretzle
      @UrbanPretzle 4 ปีที่แล้ว

      Solutions are not public but my solutions to the lab exercises that I'm currently working on can be found here github.com/conorhennessy/SLAM-Course-Solutions
      Let me know if you spot anything wrong

  • @alekseyroganov1753
    @alekseyroganov1753 2 ปีที่แล้ว

    Thank you for this great material. Unscented transformation transfer points from state space to measurement space. In space update equation we summarise mean in state space with K multiplied delta z in measurement space. It's possible because K contains Pxy which contains information about transformation from measurement space to state space?

  • @123321123456761
    @123321123456761 9 ปีที่แล้ว +3

    Hi Professor,
    You have mentioned that the unscented transform gives a way to transforming a Gaussian distribution through a non-linear function. I wonder if we can still apply the same technique to transform a NON-Gaussian distribution?
    In other words, if we want to non-linearly transform a non-Gaussian distribution, can we calculate the sigma point in the same way and obtain the same accuracy in estimating the moments of the transformed distribution?
    Thank You

  • @koushikg1655
    @koushikg1655 6 หลายเดือนก่อน +1

    Amazing

  • @double_j3867
    @double_j3867 9 ปีที่แล้ว +1

    Good lecture Prof Stachniss. Can you tell me in regards to the simple example of tracking a noisy sine wave with changing amplitude and frequency, will a UKF or particle filter perform better than the EKF in terms of accuracy and robustness against divergence? I have generally seen the EKF perform poorly at tracking a changing amplitude....

  •  ปีที่แล้ว +1

    Has anyone filtered quaternion measurement with ukf? Like measuring orientation in form of quaternion and having states of quat, velocity of quat, acceleration of quat?

  • @tyl1320
    @tyl1320 4 ปีที่แล้ว

    It is good to explain easily, but I wonder if the UKF calculation amount is "Slightly slower than the EKF" compared to EKF even if the state dimension is large.

  • @DanielGoodrick
    @DanielGoodrick 9 ปีที่แล้ว +3

    Is it true that the unscented Kalman Filter is unscented because it doesn't stink? The story I heard is that the graduate students that developed it thought their professor's EKF idea stunk and used "unscented" to distinguish their algorithm from their professor's.

    • @robosergTV
      @robosergTV 8 ปีที่แล้ว

      You could have just google it, couldnt you? From wiki - " its creator Jeffrey Uhlmann explained that he came up with the name after noticing unscented deodorant on a coworker's desk."

    • @CyrillStachniss
      @CyrillStachniss  3 ปีที่แล้ว

      😂 thanks; i didn’t know that.

  • @FarooqKifayat
    @FarooqKifayat 8 ปีที่แล้ว +1

    At 34:17 in the Extended Kalman filter equations (3) and (4) the noise covariances seems that Rt represents the process noise and Qt represents the Measurement noise. Is this true? Otherwise they should be switched in these equations.

  • @pushpapandey7727
    @pushpapandey7727 2 ปีที่แล้ว

    Can UKF be implemented for state estimation of a partially unknown non-linear system?

  • @Squib1st
    @Squib1st 3 ปีที่แล้ว

    I don't understand the choice of the weightings. It's stated that the weights should sum to 1. Yet the weights taken (24:38) have both w_m and w_c the same, except w_c[0] is (1- a^2 + b) bigger, hence they both can't sum to 1. Am I misunderstanding something or do the weights not need to sum to 1?

  • @林奕勳-c5t
    @林奕勳-c5t 10 ปีที่แล้ว

    Since UKF use unscented transform twice to propagate the sigma points throw function g and function h, one for the estimate step and another for the Kalman Gain step, is it possible to use only one unscented transform to propagate the original sigma points throw g*h to calculate the Kalman Gain?

  • @muthulakshmi5162
    @muthulakshmi5162 4 ปีที่แล้ว

    Can anyone please explain about "constrained unscented kalman filter" ? What the word constrained here denotes

  • @michealning8450
    @michealning8450 8 ปีที่แล้ว

    one question, why the ukf use the square of the sum of dimensionality plus the scaling parameter? namely sqrt(n+lambda)

  • @boss666thebeast
    @boss666thebeast 7 ปีที่แล้ว

    Which exactly is the nonlinear function g? Do we "create" it, based on what our data is?

  • @dhanunjayaraomarisarla9069
    @dhanunjayaraomarisarla9069 8 ปีที่แล้ว +3

    intuitive

  • @oldcowbb
    @oldcowbb 2 ปีที่แล้ว

    so ukf is a smart version of particle filter?

    • @CyrillStachniss
      @CyrillStachniss  2 ปีที่แล้ว

      No. UKF is a Gaussian filter, not really related to a PF.

  • @林奕勳-c5t
    @林奕勳-c5t 10 ปีที่แล้ว

    As UKF pass sigma points through non-linear function,which is similar to Particle Filter passing particles through non-linear function , how is UKF compare to Particle Filter?

    • @CyrillStachniss
      @CyrillStachniss  10 ปีที่แล้ว +4

      One key difference is that the UKF always goes back to the Gaussian belief, the PF does not. There are several other differences as well ....

  • @ruhulamin-fi4hi
    @ruhulamin-fi4hi 6 ปีที่แล้ว

    i am not clear in y=h(x) how can i map ?will i use any specific nonlinear model or not...if i use which is in your lecture...don't define it..

  • @haniyea-c3f
    @haniyea-c3f ปีที่แล้ว

    Subtitle please

  • @pritismankar2788
    @pritismankar2788 2 ปีที่แล้ว

    Can covariance matrix have an element which would be negative or the square root of covariance matrix will have imaginary value(this case will lead to sigma points coordinates with imaginary component)?

    • @CyrillStachniss
      @CyrillStachniss  2 ปีที่แล้ว

      Covariance matrices are positive (semi)-definite, that means that determinant is not negative

  • @saschamarquardt6198
    @saschamarquardt6198 6 ปีที่แล้ว

    Awesome!

  • @iviingivia4158
    @iviingivia4158 8 ปีที่แล้ว

    What if my state transform function is linear, but my observation function is non-linear?

    • @hemantyadav6501
      @hemantyadav6501 7 ปีที่แล้ว

      then the state transform function will be just treated as an identity function as the professor has stated and the observation function is treated as non linear.

  • @gopitilakv3135
    @gopitilakv3135 7 ปีที่แล้ว

    Do we have to apply inverse unscented transform after the nonlinear system to match sigma points with original sigma point characteristics?

  • @francisbaffour-awuahjunior3099
    @francisbaffour-awuahjunior3099 3 ปีที่แล้ว

    what does bel mean in bel(x)?

  • @nicolasperez4292
    @nicolasperez4292 3 ปีที่แล้ว

    46:40 how do you get the 'true gaussian' on the left?

    • @lksmac1595
      @lksmac1595 2 ปีที่แล้ว

      Watch 49:40 . Mean and Covar of the 'true gaussian' are determined by sampling "a lot" of points.

    • @CyrillStachniss
      @CyrillStachniss  2 ปีที่แล้ว

      Yes

  • @leonardcheri2118
    @leonardcheri2118 8 ปีที่แล้ว

    yeah and when there is nothing on it like a hat or a bar then its our guessss?????? when you calculate sigma points you wrote square of a covariance,... which one is it hat bar ... some alien covariance.

  • @MahmoodSalah
    @MahmoodSalah 7 ปีที่แล้ว

    please provide subtitle with the videos its worth spreading, anyone have subtitle for this video ?
    the auto generation also is not appear