Build gen AI features powered by your data with Firebase and PostgreSQL

แชร์
ฝัง
  • เผยแพร่เมื่อ 24 ธ.ค. 2024

ความคิดเห็น • 32

  • @mralek5720
    @mralek5720 7 หลายเดือนก่อน +13

    Amazing demo! Really impressed by the seamless integration between Data Connect & GenKit and the associated dev tools. This is hands-down the easiest way to integrate RAG into an app I've seen, well done! 👏

    • @michaelbleigh8737
      @michaelbleigh8737 7 หลายเดือนก่อน +2

      Thanks, that's kind of you to say!

  • @rahulgupta7720
    @rahulgupta7720 6 หลายเดือนก่อน

    Very Informative tutorial!
    Genkit is truly the future of building AI driven apps. Would love to get much more tutorials in the future

  • @missedme0063
    @missedme0063 4 หลายเดือนก่อน

    VERY cool demo, thank you!

  • @kevingrondin974
    @kevingrondin974 7 หลายเดือนก่อน +4

    @Michael Bleigh you can share your code on your github ?

    • @michaelbleigh8737
      @michaelbleigh8737 7 หลายเดือนก่อน +5

      A version of the Compass app will be published to GitHub in the coming weeks (I think)...stay tuned! You can also go through this codelab which covers much of the same content but uses Firestore (since it's generally available): firebase.google.com/codelabs/ai-genkit-rag#0

  • @samarioantonio
    @samarioantonio 6 หลายเดือนก่อน +1

    is this easy to integrate with cloud firestore? is there a simple way to connect my firestore database to data connect and have both databases collecting data?

    • @michaelbleigh8737
      @michaelbleigh8737 6 หลายเดือนก่อน +2

      Firestore integration is something we're looking at for the future. You can vote on it here: firebase.uservoice.com/forums/948424-general/suggestions/48434618-cloud-firestore-datasource

    • @samarioantonio
      @samarioantonio 6 หลายเดือนก่อน

      @@michaelbleigh8737 awesome thank you for replying, just voted!

  • @robinryf5
    @robinryf5 7 หลายเดือนก่อน

    Very awesome introduction! This is doable for everybody who is interested and eager to learn. Thank you. I wonder what other use cases there could be besides search 🤔

  • @jerryf196
    @jerryf196 7 หลายเดือนก่อน

    how do you generate the embeddings? You ran a script but does it use the vertex firebase SDK?

    • @mbleigh
      @mbleigh 7 หลายเดือนก่อน

      The embeddings were generated using the Vertex AI API through Firebase Genkit.

    • @jerryf196
      @jerryf196 7 หลายเดือนก่อน

      @@mbleigh Thanks. I got it running with my project.
      Is it possible to add words that refine searches. For example: good exploration board game that plays best at 2 players.
      In my firestore data, I have a field that contains number of player count

    • @jerryf196
      @jerryf196 7 หลายเดือนก่อน

      @@mbleigh also for the dreamVacation.ts how do you run this flow? Like thiis?
      const response = await runFlow(dreamVacationFlow, 'Some input');

    • @mbleigh
      @mbleigh 7 หลายเดือนก่อน

      @@jerryf196 runFlow(dreamVacationFlow, {imageUrls: [...], description: "..."})

    • @mbleigh
      @mbleigh 7 หลายเดือนก่อน

      @@jerryf196 to do something like that you'd probably want function calling - you use defineTool to create a tool with parameters like "maxPlayers" then map that to a Firestore combined vector + filtering query. It looks like we don't have great docs for function calling yet for Genkit, will take note to improve that.

  • @nickjunes
    @nickjunes 7 หลายเดือนก่อน

    Is the error you're getting because you already did a vector comparison search with your searchDestinations function? If not why do you need a retriever if you already did a vector comparison search in searchDestinations with plain text? It seems like the vector comparison search can already understand plain text. What am I missing?

    • @michaelbleigh8737
      @michaelbleigh8737 7 หลายเดือนก่อน

      The error was actually because I forgot to alias deatinations_embedding_similarity to "destinations".
      The database doesn't store embeddings as text or have the ability to natively query text against vectors -- instead you have to use an embedding model to convert text into a vector then compare vector to vector. That's what _embed does.

    • @nickjunes
      @nickjunes 7 หลายเดือนก่อน

      @@michaelbleigh8737 So what does destinations_embed_simlarity do then? At 26:44 you pass it a query with plain text and are able to get some results from the database. How can you do that without first converting the query into a vector?

    • @michaelbleigh8737
      @michaelbleigh8737 7 หลายเดือนก่อน

      @@nickjunes destinations_embed_similarity performs a vector similarity search, compare_embed generates an embedding from the provided query.

  • @vijayjangid8967
    @vijayjangid8967 7 หลายเดือนก่อน

    Finally!!!!!!!!!!!!!!!

  • @mohamedkarim-p7j
    @mohamedkarim-p7j 7 หลายเดือนก่อน +1

    👍

  • @darthvader4899
    @darthvader4899 7 หลายเดือนก่อน

    what's that .prompt file?
    is it special to idx?

    • @michaelbleigh8737
      @michaelbleigh8737 7 หลายเดือนก่อน +1

      It's part of the Firebase Genkit framework, see firebase.google.com/docs/genkit/dotprompt

    • @darthvader4899
      @darthvader4899 7 หลายเดือนก่อน

      @@michaelbleigh8737 really cool. Is this going to be standardized?

  • @ruandupreez6144
    @ruandupreez6144 7 หลายเดือนก่อน +11

    His shirt?

    • @__user__name__
      @__user__name__ 7 หลายเดือนก่อน +9

      Despite the bit of dirt on his shirt, he carried on without a care. That's what kept me watching the entire video and earned my respect for him.

    • @k-c
      @k-c 7 หลายเดือนก่อน +1

      Your priorities?

    • @JohnMcclaned
      @JohnMcclaned 7 หลายเดือนก่อน

      I'd trust a dev with stains on their shirt over a corporate goon any day of the week.