The problem with these kinds of questions is there are infinite technically correct answers if you allow the equations to become more and more complex. Is using exponents really the simplest solution to this problem, taking into account it was meant for a 10 year old?
@@ladylaylowjkI like this answer because it fits when the answer choices only has 1 odd number. Now the question is, can we create mathematical relations to make a,b, and e also true ... hmmm
@@SgtSupaman If you want to be pedantic about it you can take that view . But I think most people would figure out that there is a relationship between the numbers and the only task is to figure out that relationship. No telepathy required .
@@michaelblankenau6598 It's not pedantic at all. There are many different ways this problem can be interpreted that without any further instruction are equally correct.
I’m from the UK. I learnt exponents in my first year of secondary school - which is from the age of 11+. So not unrealistic that a 10 year old may have learnt them somewhere else in the world. But, like you, I discounted them based on my own experience. D’OH
I didnt cuz I forgot the intro xD I remember another video when he said "Its for SEVEN-year-olds" 2 more times just to be clear, and then he was using some quadratic function to solve that... k den
It depends. Some 10 years old kids are in 4th grade, and some are in 5th grade. I've taught exponents to 5th graders but only to very advanced 4th graders. Admin was pissed, but exponents are on the standardized tests, so I taught them.
@benjaminmorris4962students might be in the exponent usage mindset, but these "rocket ships" weren't immediately conductive to the ending equation for people who had no connection to the format.
Its not in the middle of a test. It's homework. They will have been doing similar problems in class for the previous 2-4 weeks, they will know exactly what's expected of them.
perhaps the open ended "time waster" is the point for a 10 yr old's homework. Unless they ask someone else or go online etc the open ended questions allow them to explore independently what they have been learning. whether the eventual answer is right or wrong that personal exploration is vastly superior for being retained than being told things by a teacher or book. Of course, i imagine almost no-one does this anymore which is a real shame.
@@imb0wcileThat doesn't even encourage independent learning because this is such a vague and open-ended math question that would lead them to spend a lot more time than necessary just to get homework done. Even if they go out of their way to learn it, it still doesn't guarantee what they are trying to solve is even available by verified academics unless someone had to take over the homework. If anything it would make them less motivated to learn by themselves because the exploration doesn't lead them to arrive to a beneficial or positive outcome after all that time and stress.
I had a teacher that would always put an extra credit problem at the end for the competitive students. Wouldn't mind something like this in that context.
I had a teacher in highschool who put an impossible question in our test. In the end, everyone gets a point for that question. The lesson is "You are on a timer, skip hard questions"
One core problem with these kinds of puzzles is if there are no clearly defined constraints on what the pattern could be, I could theoretically create an expression for each potential answer such that any potential answer could be considered true. Heck, to make it simple, I could have an expression that ignores or nullifies all the triangle numbers and just create a curve that includes 9 and 2 and whatever answer I want.
@@SharienGaming If it is presented that way, it can be. But if it is a graded question that requires a specific answer, then it should only have one valid answer according to the presented information and constraints.
@@LordNifty thats honestly a bad take - its fine for such a question to have an intended answer, but any answer that arrives at a correct solution with reasoning that works is good i dont see a reason to penalize students for thinking outside the box - thats what you want to encourage: find a solution that works, not figure out what someone else wants you to think mind you, thats why multiple choice questions are completely useless... they encourage the exact opposite way of thinking the only thing thats helpful for is to reduce work for whoever is doing the grading...at the detriment of the student
@@SharienGamingOkay but, most of not all mathematical equations were single answer, single method-to-solve ones to the point where you're penalized for solving it correctly with a different method. I'm not saying that's a good thing, but it is a bit jarring and confusing for students to go from that to this with no forewarning.
@@Epic24123 yikes... that sounds like you had some pretty terrible math teachers... because if theres one core truth throughout all of math... its that there is always more than one way to do something heck a lot of the time there are numerous ways
13 because the first two rocket ships have three even numbers and one odd number, the last rocket ship has three even numbers and 13 was the only odd number as an option
Each of the suggested answers is the correct solution if you consider a suitable linear equation. If you write the equations with integer coefficients (but without all four coeff's having a common divisor), you get 206L - 17R - 8T = 128C, 102L - 37R + 344T = 128C, 334L - 49R + 248T = 256C, 38L - 21R + 216T = 64C, 4L - R + 8T = 4C, where L, R, T, C stand for the left, right, top, and central entry in the shape, respectively. For the third rocket, the first equation gives solution C = 16, for the second equation it's C = 8, the the third one C = 13, the fourth one C = 6, and the last one C = 10.
@benjaminmorris4962 Essentially by solving systems of equations. We are looking for factors W,X,Y,Z so that W*L + X*R + Y*T = Z*C in all three pictures. This gives you three linear equations 6W + 4X + 2Y = 9Z, 4W + 32X + 3Y = 2Z, 12W + 24X + 2Y = A*Z, where A is a placeholder for the values a)-e). Solving this system of equations, we can see that Z can be chosen freely and W = (13A-2)Z/128, X = (5A-114)Z/256, Y = (174-11A)Z/32. Then, I plugged in the values a)-e) for A and chose Z so that W, X, any Y ended up being integers.
I think the big problem here is that, while exponents are taught at the age of ten, it was basically used exclusively for area with an equition. I wouldn't expect someone to set up an eqution with exponents with vague givens, till at least agibra 2, easily an 8th or 9nth grade class at the earliest.
Especially considering there's a cube here. You may learn the basics of squaring numbers in 5th grade, but I'm pretty sure higher powers aren't till later.
6^2 = 9*4 4^3 = 2*32 12^2 = 6*24 are you telling me a 10 year old can't see something that simple when they've spent the last 2 weeks doing exponents in class? There is zero algebra needed to see these two numbers combined are equal these other two numbers combined. Especially when 36, 64, 144 are all common numbers we have memorised from our times tables, and we know all the factors of each by heart.
@@bipolarminddroppingssure you might learn how do to these things when you’re about 10, but most kids that age are not smart enough to be able to get an answer, the fact that people with years and years more experience in maths are finding it annoying should tell you that it’s not a good question to give to a class of young children
25. Use the following formula: center = left + right/2 - 19*top + 39. 35. Use the following formula: center = left + right - 33*top + 65. 9. Use the following formula: center = 23 - 7*top. π. Use the following formula: center = left + (π-15)/20*right + (16 - 7π/5)*top - 26 + 13*π/5.
A well demonstrated point, that any of the answers can be correct. If you have a finite sequence and you dont give a rule, you can make up a rule to get to any number at all.
i mean in general you're doing (center) = a(right) +b(left)+c*(top). you can add in +d as mscha did, but since you have at least three parameters and only two constraints youve already got an infinite number of solutions. you could burn a degree of freedom and PICK a desired final answer and include that as a third equation, if you're the kind of guy who wants to pick a fight with a math teacher. do have to point out though, that the instructions for the problem probably intended that ONLY the numbers in the rocket ship would be part of the equation. this isn't enough to force an unique solution, but coming up with smartass answers gets a lot harder.
@@OOKIEDOKIE Let a = top, b = left, c = right, then we have these equations: 2a + 6b + 4c = 9 3a + 4b + 32c = 2 2a + 12b + 24c = X Solve them, then we have: c = (5X - 114) / 256 b = (X - 20c - 9) / 6 a = (9 - 6b - 4c) / 2 You can replace X by any value (6, 8, 10, 13, 16... or any number you like).
It is easy to come up with an equation that will generate the values, but generally, you want to find a solution that doesn't introduce any new numbers.
I don't think that 17 year old has anything to be embarrassed about. I'm not sure if the teacher is trying to teach math, but if so, I wouldn't call this puzzle math. I had to pause the video for a while to figure it out: (12^2)/24 = 6. Outside of these fun and games type of puzzles, I've never had occasion in my life to create an equation using known values but with unknown operations (+, -, x, /, ^). Edit: I had paused this video at the 44 second mark. I resumed after posting the above comment and was then offered the multiple choice. Still nothing for the 17 year old to be embarrassed about, though
Puzzles are related to math and logic. They help you see patterns. You may not have had to do anything specifically like this in real life, but being able to better recognize patterns and relations between numbers is a useful skill to have that shows up everywhere. For example, just one real world example I could think of, would be something like programming. If you get a weird bug with weirdly consistent values and errors, you know that whatever mistake is in the code, it has to be consistently producing those same errors. That can help you narrow down what KIND of error it is, and once you know what kind of error it is, it can help you figure out what part of the code is causing it since you know what to look for. This kind of problem solving is extremely useful. Math does more than just teach math. It also teaches logic, critical thinking, and problem solving techniques.
yeah, nothing to be ashamed of, still, finding patterns is probably among the best skills, and it’s always great to train it as broad as possible, maths, arts, sports because it helps find more patterns, more ways to avoid mistakes, to prevent or correct problems, to improve efficiency
@@eragon78 Don't get me wrong. I use math on a daily basis in my adult life, including creating equations based on the known relationships between one thing and another, like price and mass. For some computer programming I would do, I even create, simplify, and code seemingly infinite recursions. But with every equation I create, I always know which operations (+, -, x, /, exponents, roots, etc) I would need to use for each segment of it. For example, if you're scheduling payments, you're subtracting bills, but adding paychecks to your account. If you're figuring out proportions, you're either multiplying or diving (multiplying the reciprocal). If you need to calculate odds, you're using Pascal's Triangle or using exponents or factorials. Not all values might be known to you, yet, but the operations are. And again, what I have never had to do was create equations with all known values and no known operations. That is not how math works. Fun puzzle, though!
@@Yonkage-ik5qb The pattern does make sense. You have 4 numbers in some order, find the relation between them. Plenty of people, including myself, were able to solve this before watching the video. There are multiple ways to approach the problem solving to figure out what a potential correlation might be. For example, one of the first things you can realize is exactly what is stated in the video. On the first rocket, there exist only one odd number, and 3 even. If you notice this, then you can quickly realize that any combination of the basic operations of addition, subtraction, and multiplication simply wont ever work, as none of those operations between two even numbers can produce an odd number. This means division is the only one of the basic 4 operations that can, and youll quickly find out that this isnt sufficient either. So the next obvious step to start trying is with exponentials. And again, using some logic, you can quickly narrow down possible combinations. If you use numbers with a large exponential, then the number will blow up way too big, and you wont be able to divide it back down with only the 4 numbers. So you should start with the small values, either with the 2 as the exponent, or as the base. That leaves you with only a handful of options to try. Then the only other way to quickly bring whatever number you produce back down to a smaller value is to divide it. So you already can quickly asses that the problem will likely be in the form X^Y/Z = W. With Y or X probably being the 2. Check a few answers and youll find the solution, check your answer on the 2nd rocket, and you have your pattern. If this formula didnt work, then you have to move on to more complex operations, but in this case it worked pretty fast. But the point is, with some basic critical thinking and observations, you can create a logical way to break down the problem and vastly reduce your potential options for what to check, without having to brute force it. Recognizing these observations is a skill. A pretty useful one. Again, I use this same kind of problem solving all the time when I program. I use it for many other aspects of my life too, programming is just one of the few where it really sticks out quite often. This specific problem may not be related to anything in real life directly, but its the METHODS for how to solve problems that is an important skill. Its the ability to reason through a problem and eliminate options that arent worth exploring so you can more quickly narrow down solutions that may actually work. Doing weird puzzles like this helps train that ability. It helps you to think about larger patterns and ways to systematically break down one big intimidating problem into several easier to solve smaller and simpler problems. Its the same skill.
The second sentence of the problem should read, "Using only the numbers given and using each number in each diagram only once for each equation, what is the missing number?"
I don’t think that’s necessary. In my opinion it’s easy to get that the question is meant to be answered in that way and to me it seems natural to look for a pattern using only the four numbers once but it also doesn’t stop you from finding a more complicated pattern that you can apply on all three diagram to find one definite solution for the problem that is also one of the four options if you like the extra challenge.
i don’t like that idea, sometimes is fun using a number more than once, on that line of thought also i didn’t like the “each rocket must follow an equation” from presh because sometimes it is solved across the drawings
@@elton8135 , We must ask what is the goal of the problem? One possible goal is to reach an expected answer. A different goal is to reach an explainable answer. Given the overall context of this puzzle, I conclude that the goal was the former.
@@steve_weinrich the multiple choice is unnecessary anyway, but its kind of a confirmation the pattern is the one that was supposed to be found. But does the question have to be precise? Why should you not allow alternative solutions (if there are any) for an extra challenge for those who want to try?
This feels like one of those questions that requires knowing what unit is being taught and what was focused on in class when the homework was assigned.
One key piece of missing info is that of the context of the question, which appears to be learning either order of operations or exponents. I'm sure if you were a student given this question all of your previous work would have lead into this and so you have pemdas or exponents on the mine. Without context (or pausing the video before the multiple choice answers pop up like me lol) an older person may over think it like it's some IQ puzzle.
That's always the problem with these things that get posted to the internet. The child has spent the last 4 weeks being shown similar problems at school, they understand what they're expected to do. Then their parent looks at the problem, has no context for what they're supposed to be doing, can't figure it out and declares that it's really difficult! Well, yes, without context EVERYTHING IS DIFFICULT. Still, I figured this one out in 10 seconds because I just happened to see that 6^2 = 9*4
I tried solving this if I was a 10 year old. At this age they only know addition, subtraction, multiplication and division. How on Earth would 10 yo boy know how to do powers
@@OlegHikaro it's literally introduced as part of 5th grade math curriculum. If anything, it makes _more_ sense that it would include exponents because it's literally the year they're explaining exponents.
The answer i got was 10, pattern being left fin plus double top fin minus quad right equals middle, 6 +2(2) - (4/4) = 9 and 4 + 2(3) - (32/4) = 2 so 12 + 2(2) - (24/4) = 10
This is an ill-posed question, since the phrase "... to make a valid equation" is ambiguous. For instance, we could simply look for a linear equation which works for both of the first two 'rocket ships'. In this interpretation, *any* of the five answer possibilities (a) through e)) can be made to be the "correct answer" to the problem (in fact, any number can be made to be the "correct solution"), which follows by straightforward linear algebraic reasoning.
True, a multiple choice question should be presented in such a way that there is only one correct answer. Since this was brought up by a kid that couldn't solve it, maybe the original question was worded correct. Just curious. What are the straightforward linear algebraic reasonings for the provided answers? Are they actually easier than 6^2 / 4 ?
@@maartenverdouw4688well, let's say that number in the middle is some linear combination of other three, then we have 3 variables to work with, but only 2 given equations, so we can make third one any number we like and solution will exist, since that triples of numbers are linearly independent
I came to the same answer. When I saw the 32 in the 2nd figure (large compared to figure 1) while it's other numbers are still small, I realise an exponent was needed. The top clearly had to be the exponent to get a larger result in figure 2. From there it was easy.
yup and its one of the easily spotted powers of 2 - so its pretty quickly clear that its gotta be 4 as the base (and 4^3 = 64)... at that point you already won, because the rest is confirmation and trivial calculation
Or you can just see it as a set of 3 linear equations of form: ax + by + cz = d where a is the number in the top piece, b is the one in the left fin, c is the one in the right fin, and d is the one in the main body. x, y, and z are the numbers in the equation we're trying to find. This system has a solution for each of the answers as d in the third equation, therefore making all the answers technically valid. Answer e has the prettiest solution of this form: 2a + b - c/4 = d but all of them are technically valid. No exponents needed.
@@charleslivingston2256tbf it doesn’t actually say that the 10 year old was asked the question in school. He could’ve just found it on the internet on his own and asked his brother for help
e) 10 is also a correct solution! Take the following definitions: left wing = A, right wing = B, tip = C and middle = D One solution is: A - (B/4) + 2C = D Case 1: 6 - 4/4 + 2x2 = 6 - 1 + 4 = 9 Case 2: 4 - 32/4 + 2x3 = 4 - 8 + 6 = 2 Case 3: 12 - 24/4 + 2x2 = 12 - 6 + 4 = 10
Aw, come on, there's nothing to hate, it's just a problem. I'm gonna use this opportunity to advertise for Khan Academy: on top of the valuable skills to learn, it really helps developing the kind of intuition around numbers that you need to quickly solve such problems !
I really feel math teachers give these to children just to get an ego boost because expecting a kid to solve something that not even most teenagers or even adults would seems rather odd
I think a better way to approach the problem is to think about the middle equation. 32 is a lot bigger than the other numbers, so the answer probably involves something like exponentiation (or it could involve multiplying by other constants). Then the top of the rocket is the only other number that increases from the left to the middle rockets, which means it would be the exponent. 2^3 * 4 = 32, and 4^3 = 32 * 2. Then 6^2 = 9*4 works for the first equation.
I got the answer 10 in the following way: left+middle+right, sum the digits until you get 1-digit number, then add one = top fin. I believe that comes more naturally to a 10-year old than exponentiation. And doubtless there are other ways.
Took me a few minutes of staring at it to see the pattern. Key hints were that 6 has one of the factors of 3 needed to make 9, and the divisor is highly composite, again sharing factors with the base. I just had to spot the exponent.
From my experience dealing with these kind of puzzle, first you try addition & subtraction, if it fails then try to include multiplication & division, if it also fails then try to include exponent, it it still fails then try to include factorial. It may takes longer, but it's a reliable SOP. 😅
@@gorilladisco9108 Yeah, definitely start simple. But it doesn’t take long for a combinatorial explosion to take hold. I was already considering combining numbers across groups instead of within. Simple enough as an idea. It would be fitting for a lateral thinking puzzle.
The number in the nose cone tells you how many even numbers there are in the rest of the rocket. By this reasoning the correct answer is 13, the only odd option presented.
my answer was 13 too. but w/o the special nose meaning. first two rockets both have 3 even and one odd number. so let's make the 3rd the same. and 13 is the only solution of the offered ones to achieve this. I did not find the squaring solution. but I doubt it's the intended answer, as squaring is to advanced for 10 years old, I think. and regarding 'it has to be an equation' ... it's unclear if that was part of the original question, actually.
@@Kero-zc5tc it doesn't, though. The question, as presented, says they all form an equation with the same formula. As far as I know, they only possible answer that works at a 5th grade math level is 6, because the pattern _has_ to include a common algebraic formula.
The top number shows the number of even numbers in the rest of the rocket... so the answer is c) 13, as the top number is 2 and there are already two even numbers there.
For me (as a programmer), 32 combined with 2 in same rocket helped to catch idea of make a power of some numbers, and i figured out in couple of minutes
So we're given f(6, 2, 4) = 9 and f(4, 3, 32) = 2 What is the function f? Since we have 3 variables and 2 examples the solution is not unique. Can you find ALL possible functions f?
@@andreydeev4342 I saw 2, 32, and 4 were all powers of 2, but was too thrown off by the 3. Likewise, I saw that sqrt(4×9) = 6, but somehow didn't think to turn that into 4×9 = 6^2. Had I did, I probably would've gotten it right away.
"in the same way" is not defined. this could mean that the same operators are involved, but the order can be different. or, it could mean that the numbers must appear in the same order, but with any operators. or any other rule you can imagine. communicate precisely or not at all.
I did exactly the same thing, but didn't find a solution. I've said before that inevitably I pause it to try and solve it, then restart the video, only to be immediately commanded by Presh to pause the video....
Problem with this puzzle is its not showing you are capable of performing algebra or calculus or something, nor is it a real world application where you can logically work through. Its trying to find a pattern with limited information, when the question, at a glance would make it appear to be something related to rockets, or geometry/areas of the shapes. When its just "deduce my pattern", the pattern could be anything, might as well ask what are the similarities between my shoes and a pile of rocks.
Now, the real question is: given any arbitrary ς, ε, ρ, τ, υ, θ, ι, α, σ, δ, φ, γ, that satisfy: f(ς,ε,ρ,τ)=0, f(υ,θ,ι,α)=0, f(σ,δ,φ,γ)=0 is it possible to find that function f? Is it possible to derive a "systematic" way of doing so?
I mean, I'm from Czechia and our school system is very different from USA, but we had to re-learn things all the time. I can't even remember what we did in 4th grade (9 or 10 years old)
@@mn1233 Right, but what I'm getting at is that's what an exponent is. The problem is asking you to develop an equation which can be used to extrapolate the last number in the last rocket. A 10 year old is going to be in the mindset of using basic functions. They won't think that 3 means multiply 4 times itself 3 times. If they do, they won't know how to express it.
@@limprooster3253 I suppose that I've watched kids do math and they all do it different ways. my 5 year old does basic multiplication using skip counting. as I think about this problem, and how I'd show it to her, I think I'd mention that 4 x 9 is 36 and you can divide it by 6 twice since 36 = 6 x 6 and there are two sixes. The second rocket is 2 x 32 and you can divide it by 4 three times since 64 = 4 x 4 x 4 and there are three fours. The last rocket would be her's to solve. She might be able to solve it using Math Notes.
@@limprooster3253 It all depends on how they solve it. It's plausible that someone would see the numbers "12" and "2" and then compute 12 x 12 to get 144; this result (144) can then be divided by 24 to get 6. They'd use that method based on the patterns that were observed in the first two examples; I say this because-- when I watch my daughter do mathematics, she uses her fingers to add "8 + 3" even though I told her to use "8 + 2" (10) + 1. IMO, the "mental math" suggestion should be obvious since she works a lot with "10 frames." But I have to take what I can get. Like, she is noticing the "5 in a row pattern" in a "10 frame" and will count 5, 6, 7, for example, to count seven dots. In the end, notational sophistication happens and exponents show up but "number sense" happens first.
I got it, but slightly different "wording" to get an equation. Left fin to the power of nose cone is divided by fuselage to get right fin. LF ^ NC / F = RF
With such questions we need context. Particularly what they just learned. Clearly they just learned exponents. Abd with that knowledge, we would have a starting point.
1:15 the answer is13 There is another simpler pattern Each rocket has three even numbers and one odd number The first rocket has three even numbers (2-6-4) and one odd number (9) The second rocket has three even numbers (4-2-32) and one odd number (3) The third rocket has three even numbers (2-12-24) and one missing odd number And as the available choices all are even except for 13 which is an odd number and thus it is the answer
I solved this, because when I noticed the top triangle was such a small number in all 3 examples, I had the idea that it might be being used as a power. Figured it out pretty quickly after that
I don't like that the problem doesn't give a list of allowed operations. That way we could implement an algorithimic procedure that alway terminates with the list of all possible legal patterns. This way one has to "guess" which operations are valid and whicha are not.
Well here is a potential option to obtain equations which could fit what we need since they match for Image_1 and Image_2. Image_1: 6^2 / 4 = 9 36 / 4 = 9 Image_2: 4^3 / 32 = 2 64 / 32 = 2 So the result for Image_3 is: 12^2 / 24 = x 144 / 24 = 6 So the answer according to this option is (d) which is 6.
Sometimes one finds a problem hard to solve, other times easy. For this one I found it easy, as it took me less than two minutes to crack the solution.
"the numbers combine in the same way to make A valid equation" You made 2 equations with those numbers and the solutions of each weren't any of them, so it's either wrong or those teachers should express themselves better when writing the instructions to solve the problem.
Addition, multiplication and division did not yield a pattern as the numbers were all increasing in different patterns and factors were all wrong for a pattern too. I tried a couple of other things too, But once I started on the exponential route it came out fairly easily. I found that the real key to success with this problem was to eat pasta after not getting the answer, then try again. I recommend a sauce with tomatoes, courgettes and cheese... That 17 year old needs to change his/her diet!
I managed to solve it. I applied the logic with even numbers, that, multiplication, addition and subtraction wasn't getting us there for the first ship. So I played around with division, and when that didn't work, I tried exponents and found the solution. I didn't think about prime factors, exponents were just the next thing I could think of to try.
For me, I instantly realised the top numbers were all small, so I thought they either were to do slight addition changes, or double/tripple a value But after a while exponents came up in my head, and I thought "no that can't be, you don't learn about those that early on", but tested it anyways Got the answer 6, unpaused the video, and only then realised it was multiple choice (but so did apparently everyone else as well)
Yes, didn't seem that hard having studied science at university. But ... I think the kid was having fun. His class must have practiced exactly this problem pattern in class, but big brother wasn't told how to do it.
@@nickronca1562 Generally the trick with these problems is that after a minute of trying the 4 basic operations, its almost always an exponential. You can pretty quickly verify that the 4 basic operations dont work alone, and once you add in exponentials, there are only a few things to try that make any sense. You cant use the bigger numbers as the exponents, or values are going to blow up, so you start with the small stuff. In that first rocket, you have only 5 possibilities to try. 6^2, 4^2, 9^2, 2^4, and 2^6. Anything else is going to blow up way too fast and be unusable. Once youve tried those 5 possibilities, there isnt much left to try other than dividing the result by one of the remaining numbers. And that happens to be the solution, once you try 6^2. Then you can test it on the 2nd rocket, and you know you have your answer. Thats pretty much always the trick to these kinda problems. Once you recognize it, its pretty quick to solve basically any easy problem of this type. More complex problems would still pose an issue, but those ones arent going to be given to a 10 year old, and those types of harder problems usually dont go viral.
So I looked at the thumbnail and didn't know that it was a multiple choice question till around 1:17 in. I worked it out with some back and forth and I'm glad to see 6 is part of the possible answers. I'll continue to watch now to see if I was right
Took about 2 minutes in head before seeing the possible answers. Reasoning: - Assume one number was going to be an exponent, because without such shenanigans, it wouldn't be a notable problem. - To keep the numbers of manageable size, the exponent has to be small. Only the top position is small in all three cases, so the top is probably serving as an exponent. - For the first one, 9 has two 3's as factors, but 6 only has one 3, and this is a squaring example, so try 6^2 / 9 and it works. - Same thing works for the second case, so the formula is known, so the answer comes from 12^2/x = 24, so x = 6.
The top entry is also counting how many of the other entries are even. Thus, (c) is a possible answer (and also the unique correct one from the given possibilities). Some possible equations for this rule, with L, R, C, T denoting the entries on the left, on the right, in the centre, and on top, respectively, would be 1 = L+C+R+T mod 2, gcd(L+C+R+T,2) = 1, T = gcd(2,L) + gcd(2,C) + gcd(2,R) - 3, or T = log_2(gcd(2,L)) + log_2(gcd(2,C)) + log_2(gcd(2,R)).
You don’t need to know exponents (although that is the way I solved it in a minute or two). Take the number in the left fin and multiply it by itself the number of times that the nose cone says. Divide your answer by the number in the right fin and you end up with the main body of the rocket. So 9 = 6*6/4; 2 = 4*4*4/32 and ? = 12*12/24 =6
Took a minute of guessing and testing all possible equations involving the first set of numbers. Once it was determined that (6^2)/4 = 9, to then figuring out the equation was basically (a^b)/c=x. This question -- I think -- is really just tasking the student with using their cumulative mathematical knowledge to try every possible combination they know against an applicable pattern.
What country are they from? I started high school at age 12 and I'm pretty sure I didn't learn exponentials until 13 or 14. Certainly not at 12 or prior. And this is homework for age 10? Where?
@@kendraroth1276do you mean grades or years of attending school 7-8? That’d be 13 years old assuming starting school at the age of 6 and learning it in grade 7
@@kendraroth1276 As an American, I was not taught exponents in second or third grade. I know a friend's third grader was being taught coding, but that was like 2019.
Giga-brain alternative answer: Convert the numbers to English words and count the letters in each word. Then, multiply the letter counts, and sum the digits. 1. “Two” = 3 letters, “six” = 3 letters, “four” = 4 letters. 3*3*4=36, 3+6 =9 2. 5 (“three”) * 4 (“four”) * 10 (“thirtytwo”) =200, 2+0+0 =2. So, naturally: 3. 3 (“two”) * 6 (“twelve”) * 11 (“twentyfour”) = 198, 1+9+8 =18
I got the solution very quickly because of the hint in the instruction. It has to be a valid equation, not just a pattern. I was looking at all of the rockets, not the left one only. In the middle, there is a high number (32) that may only be calculated using the power of some of the other numbers.
What almost immediately tipped me off that exponents were involved was the number 32. That is a very large number compared to 2, 3, and 4; with multiplication the largest number you can produce with them is 24. After that it was easy to find the pattern by trial and error. It easily took me less than 5 minutes to solve.
This is nonsense. There's an infinity of functions that have f(2,6,4)=9 and f(3,4,32)=2 so the value of f(2,12,24) is undetermined. You can choose the value you want. -1/12 for example 😅 The question is: want was the last lesson of the brother about?
1:14 paused to answer. It's 6. Let left fin be "l", right fin "r", nose "n", and body "b". Given the supplied values, the equation we're looking for is l^n÷r=b (6²÷4=9, 4³÷32=2, 12²÷24=?, and ? is 6 because that's what 144 divided by 24 is).
gotta keep in mind this is the homework of a 10 year old. i highly doubt 10 year olds are working with exponents at their current level. especially considering the current state of education, and the level that most kids are these days. everyone here is severely overcomplicating this "puzzle" because that's what it is, a simple puzzle. so think simpler. much, much simpler you had it at the start, the first "rocket" (which is another hint as to why you are overthinking this, its a rocket, a child like rendition of a rocket.) has 3 even numbers, and 1 odd number. the second rocket, has 3 even numbers, and 1 odd number. looking at the answers and the numbers filled in the third rocket. we got 3 even numbers, only 1 odd number in the answer sheet. it's C) 13. it's the homework of a 10 year old! STOP OVERTHINKING THESE THINGS!
Got it within 3 minutes..and i paused even b4 the options were displayed! The answer is 6...as soon as i saw the question, i quickly ran all kinds of arithmetic with the first rocket numbers, then tried to check if that sequence of arithmetic matched with the second rocket😅
the number is 174/11, because OBVIOUSLY the pattern is that you multiply the left number by 35/22, the right number by -3/22, the top number by 0, and sum them. Yeah. That is why these questions suck.
Answer: 6 The top triangle is the exponential value of the left triangle. Divide the number you get with the value of the rectangle to get the value of the triangle on the right. 12²/x = 24 144/x = 24 144 = 24x 144/24 = x 6 = x
I've been subscribed to this channel for many years, and this might be the first time I remember ever actually figuring it out myself and did it quite quickly. I see people saying they hate these kinds of problems because you have to guess what the writer was thinking, but I think it is more pattern recognition than anything. The middle one, I immediately had some intuition because whenever I am asked to find a correlation between 2,3,4, and 32 I think exponents. And from there it's pretty much down to figuring out whether 2 or 4 was going to be the base (because 32 suggests that it would not be 3). Finally, 4 months later my math degree has come in handy. I am proud.
I figured the (an) answer pretty quickly once I noticed that the value in the bottom right part of the rocket grew pretty quickly even with small increases in the upper and lower left parts. That tipped me off that one of the parts had to be an exponent. It was pretty easy to guess that the upper part was the exponent and the rest was simple trial and error.
Depends on the players, but unless the entire table is interested in this kind of puzzle or someone is really good at them and gets the answer very quickly, you're likely to have some bored and uninterested players for a while. If I wanted to give my players this kind of puzzle, I would make sure that solving it was completely optional, and maybe try to give them a look at the puzzle at the beginning of a session so the players who are interested can think about while the party does other things in game and can come back to it later, possibly even a later game session.
I'm going to use it because I know that some of the players enjoy it and will solve it in a few minutes. If you call it evil because you know your players hate it, maybe reconsider. If you fear that it takes too long, present it in such a way that they can munch on it between sessions. A puzzle that all my players enjoyed is the one with the billiard balls. (Where you have to rotate the 9 to make it a 6 to be able to add up to an odd number)
Answer is 6. I did it in 2 mins. The main clue to notice here is that even though the 2 of the outside numbers are small for the both images, the result of image 1 is relatively large when compared to image 2. So what differs so drastically between 1st and 2nd figures? The numbers 4 and 32 on the bottom right. Since the result of image 2 is very low compared to image 1, in some way, division must be involved using the numbers 4 and 32 as denominators for each image. From there, it's easy to figure out the rest.
So the first thing I noticed when I approached this puzzle was that the relationship between the centre number and the right wing number wsa inversely proportional, which suggested that the central one was probably a divider. From there I looked at 9x4 being 36, and asked how can I combine 6 and 2 to make that, and it all slotted into place from there. Solved in under 30 seconds. :)
The problem with these kinds of questions is there are infinite technically correct answers if you allow the equations to become more and more complex.
Is using exponents really the simplest solution to this problem, taking into account it was meant for a 10 year old?
@@peadarr the top number is the number of even numbers of the rest of the rocket. Now that suits more 😃
There are 5 possible answers.
10 year olds are 5th grade. Exponentiation is taught in 5th grade.
@@ladylaylowjkI like this answer because it fits when the answer choices only has 1 odd number. Now the question is, can we create mathematical relations to make a,b, and e also true ... hmmm
@@davidnewell3232 wow😳.... could I get a hint and the answers?
I absolutely hated these kinds of problems. The textbook writers were asking us to guess what they were thinking.
It should be a “show your work” type question, where any answer is accepted as long as it is sufficiently justified.
That’s the definition of intelligence… being able to figure out what others are thinking .
@@michaelblankenau6598 , no, that would be the definition of telepathy.
@@SgtSupaman If you want to be pedantic about it you can take that view . But I think most people would figure out that there is a relationship between the numbers and the only task is to figure out that relationship. No telepathy required .
@@michaelblankenau6598 It's not pedantic at all. There are many different ways this problem can be interpreted that without any further instruction are equally correct.
I just outright ignored exponents because I couldn't remember whether that was being taught at age 10
Same.. I ruled out exponents, factorials based on the age ten
I’m from the UK. I learnt exponents in my first year of secondary school - which is from the age of 11+. So not unrealistic that a 10 year old may have learnt them somewhere else in the world. But, like you, I discounted them based on my own experience. D’OH
I didnt cuz I forgot the intro xD
I remember another video when he said "Its for SEVEN-year-olds" 2 more times just to be clear, and then he was using some quadratic function to solve that... k den
It depends. Some 10 years old kids are in 4th grade, and some are in 5th grade. I've taught exponents to 5th graders but only to very advanced 4th graders. Admin was pissed, but exponents are on the standardized tests, so I taught them.
Yep. Even in China exponents were taught in 7th grade. A problem for 10 years old cannot use exponents.
Forget 10 year olds, this is such an esoteric pattern that even adults would struggle to find this.
Can confirm.
@benjaminmorris4962 Why would they? How would the teacher teach them how to find out this pattern?
@@eclipse5708 clearly, you don't remember being in school.
It took me only a few minutes to tease out the formula, and confirm it worked for the first two figures. Not that hard.
@benjaminmorris4962students might be in the exponent usage mindset, but these "rocket ships" weren't immediately conductive to the ending equation for people who had no connection to the format.
Such a childish problem!
took me like only an hour, 2 YT videos, a 5 min cry session, and self-motivation in front of the mirror
😂😂😂😂😂😂😂
😂❤
What youtube videos were they, videos on how to solve questions like these?
@@caveboy7645a video on 10 year old math…
And this one
Skill issue
This is so incredibly open ended and such a time waster in the middle of a test, youre stressing out 10 year olds for no reason
Its not in the middle of a test. It's homework.
They will have been doing similar problems in class for the previous 2-4 weeks, they will know exactly what's expected of them.
perhaps the open ended "time waster" is the point for a 10 yr old's homework.
Unless they ask someone else or go online etc the open ended questions allow them to explore independently what they have been learning. whether the eventual answer is right or wrong that personal exploration is vastly superior for being retained than being told things by a teacher or book. Of course, i imagine almost no-one does this anymore which is a real shame.
@@imb0wcileThat doesn't even encourage independent learning because this is such a vague and open-ended math question that would lead them to spend a lot more time than necessary just to get homework done. Even if they go out of their way to learn it, it still doesn't guarantee what they are trying to solve is even available by verified academics unless someone had to take over the homework.
If anything it would make them less motivated to learn by themselves because the exploration doesn't lead them to arrive to a beneficial or positive outcome after all that time and stress.
I had a teacher that would always put an extra credit problem at the end for the competitive students. Wouldn't mind something like this in that context.
Ah yes, mathematics, the subject of creative exploration
I had a teacher in highschool who put an impossible question in our test. In the end, everyone gets a point for that question. The lesson is "You are on a timer, skip hard questions"
One core problem with these kinds of puzzles is if there are no clearly defined constraints on what the pattern could be, I could theoretically create an expression for each potential answer such that any potential answer could be considered true. Heck, to make it simple, I could have an expression that ignores or nullifies all the triangle numbers and just create a curve that includes 9 and 2 and whatever answer I want.
and maybe thats the point? you know... to get you thinking about the different options and workings? the answer is almost irellevant
@@SharienGaming If it is presented that way, it can be. But if it is a graded question that requires a specific answer, then it should only have one valid answer according to the presented information and constraints.
@@LordNifty thats honestly a bad take - its fine for such a question to have an intended answer, but any answer that arrives at a correct solution with reasoning that works is good
i dont see a reason to penalize students for thinking outside the box - thats what you want to encourage: find a solution that works, not figure out what someone else wants you to think
mind you, thats why multiple choice questions are completely useless... they encourage the exact opposite way of thinking
the only thing thats helpful for is to reduce work for whoever is doing the grading...at the detriment of the student
@@SharienGamingOkay but, most of not all mathematical equations were single answer, single method-to-solve ones to the point where you're penalized for solving it correctly with a different method.
I'm not saying that's a good thing, but it is a bit jarring and confusing for students to go from that to this with no forewarning.
@@Epic24123 yikes... that sounds like you had some pretty terrible math teachers... because if theres one core truth throughout all of math... its that there is always more than one way to do something
heck a lot of the time there are numerous ways
13 because the first two rocket ships have three even numbers and one odd number, the last rocket ship has three even numbers and 13 was the only odd number as an option
This seems like a more plausible answer for a question asked of a 10 year old. Presh’s answer is more at the high school level.
But that's not an equation
Why 13 and not 11?
@@gorilladisco9108
Because 11 wasn’t one of the multiple choice answers.
13 is the only odd number.
@@Winnetou17the equation would be (a+b+c+d)mod2=1
Each of the suggested answers is the correct solution if you consider a suitable linear equation. If you write the equations with integer coefficients (but without all four coeff's having a common divisor), you get
206L - 17R - 8T = 128C,
102L - 37R + 344T = 128C,
334L - 49R + 248T = 256C,
38L - 21R + 216T = 64C,
4L - R + 8T = 4C,
where L, R, T, C stand for the left, right, top, and central entry in the shape, respectively. For the third rocket, the first equation gives solution C = 16, for the second equation it's C = 8, the the third one C = 13, the fourth one C = 6, and the last one C = 10.
Thank you for the solutions!
@benjaminmorris4962 Essentially by solving systems of equations.
We are looking for factors W,X,Y,Z so that W*L + X*R + Y*T = Z*C in all three pictures. This gives you three linear equations
6W + 4X + 2Y = 9Z,
4W + 32X + 3Y = 2Z,
12W + 24X + 2Y = A*Z,
where A is a placeholder for the values a)-e). Solving this system of equations, we can see that Z can be chosen freely and
W = (13A-2)Z/128,
X = (5A-114)Z/256,
Y = (174-11A)Z/32.
Then, I plugged in the values a)-e) for A and chose Z so that W, X, any Y ended up being integers.
I don't think 10 year olds have learned your calculation in their heads
@benjaminmorris4962he made the equations from the solutions. To extract 4 possible solutions, you need 5 equations.
@@Q-hv2cb That does not invalidate math. A math question should be correct no matter what you think your students learned.
I think the big problem here is that, while exponents are taught at the age of ten, it was basically used exclusively for area with an equition. I wouldn't expect someone to set up an eqution with exponents with vague givens, till at least agibra 2, easily an 8th or 9nth grade class at the earliest.
Especially considering there's a cube here. You may learn the basics of squaring numbers in 5th grade, but I'm pretty sure higher powers aren't till later.
6^2 = 9*4
4^3 = 2*32
12^2 = 6*24
are you telling me a 10 year old can't see something that simple when they've spent the last 2 weeks doing exponents in class? There is zero algebra needed to see these two numbers combined are equal these other two numbers combined. Especially when 36, 64, 144 are all common numbers we have memorised from our times tables, and we know all the factors of each by heart.
@@TiMoThY211991 you learn squaring an cubing at the same time, at least in the UK. exponents are Key Stage 2 mathematics ,that's 8-10 year olds.
@@bipolarminddroppingssure you might learn how do to these things when you’re about 10, but most kids that age are not smart enough to be able to get an answer, the fact that people with years and years more experience in maths are finding it annoying should tell you that it’s not a good question to give to a class of young children
25. Use the following formula: center = left + right/2 - 19*top + 39.
35. Use the following formula: center = left + right - 33*top + 65.
9. Use the following formula: center = 23 - 7*top.
π. Use the following formula: center = left + (π-15)/20*right + (16 - 7π/5)*top - 26 + 13*π/5.
A well demonstrated point, that any of the answers can be correct. If you have a finite sequence and you dont give a rule, you can make up a rule to get to any number at all.
Wow did you just puzzle these out or is there a formulaic way to generate these?
i mean in general you're doing (center) = a(right) +b(left)+c*(top). you can add in +d as mscha did, but since you have at least three parameters and only two constraints youve already got an infinite number of solutions. you could burn a degree of freedom and PICK a desired final answer and include that as a third equation, if you're the kind of guy who wants to pick a fight with a math teacher.
do have to point out though, that the instructions for the problem probably intended that ONLY the numbers in the rocket ship would be part of the equation. this isn't enough to force an unique solution, but coming up with smartass answers gets a lot harder.
@@OOKIEDOKIE Let a = top, b = left, c = right, then we have these equations:
2a + 6b + 4c = 9
3a + 4b + 32c = 2
2a + 12b + 24c = X
Solve them, then we have:
c = (5X - 114) / 256
b = (X - 20c - 9) / 6
a = (9 - 6b - 4c) / 2
You can replace X by any value (6, 8, 10, 13, 16... or any number you like).
It is easy to come up with an equation that will generate the values, but generally, you want to find a solution that doesn't introduce any new numbers.
I don't think that 17 year old has anything to be embarrassed about. I'm not sure if the teacher is trying to teach math, but if so, I wouldn't call this puzzle math. I had to pause the video for a while to figure it out: (12^2)/24 = 6. Outside of these fun and games type of puzzles, I've never had occasion in my life to create an equation using known values but with unknown operations (+, -, x, /, ^).
Edit: I had paused this video at the 44 second mark. I resumed after posting the above comment and was then offered the multiple choice. Still nothing for the 17 year old to be embarrassed about, though
Puzzles are related to math and logic. They help you see patterns. You may not have had to do anything specifically like this in real life, but being able to better recognize patterns and relations between numbers is a useful skill to have that shows up everywhere.
For example, just one real world example I could think of, would be something like programming. If you get a weird bug with weirdly consistent values and errors, you know that whatever mistake is in the code, it has to be consistently producing those same errors. That can help you narrow down what KIND of error it is, and once you know what kind of error it is, it can help you figure out what part of the code is causing it since you know what to look for. This kind of problem solving is extremely useful.
Math does more than just teach math. It also teaches logic, critical thinking, and problem solving techniques.
yeah, nothing to be ashamed of, still, finding patterns is probably among the best skills, and it’s always great to train it as broad as possible, maths, arts, sports because it helps find more patterns, more ways to avoid mistakes, to prevent or correct problems, to improve efficiency
@@eragon78 Don't get me wrong. I use math on a daily basis in my adult life, including creating equations based on the known relationships between one thing and another, like price and mass. For some computer programming I would do, I even create, simplify, and code seemingly infinite recursions. But with every equation I create, I always know which operations (+, -, x, /, exponents, roots, etc) I would need to use for each segment of it. For example, if you're scheduling payments, you're subtracting bills, but adding paychecks to your account. If you're figuring out proportions, you're either multiplying or diving (multiplying the reciprocal). If you need to calculate odds, you're using Pascal's Triangle or using exponents or factorials. Not all values might be known to you, yet, but the operations are. And again, what I have never had to do was create equations with all known values and no known operations. That is not how math works. Fun puzzle, though!
@@eragon78 You might have a point if the pattern of this puzzle made any sense whatsoever.
@@Yonkage-ik5qb The pattern does make sense. You have 4 numbers in some order, find the relation between them.
Plenty of people, including myself, were able to solve this before watching the video. There are multiple ways to approach the problem solving to figure out what a potential correlation might be.
For example, one of the first things you can realize is exactly what is stated in the video. On the first rocket, there exist only one odd number, and 3 even. If you notice this, then you can quickly realize that any combination of the basic operations of addition, subtraction, and multiplication simply wont ever work, as none of those operations between two even numbers can produce an odd number. This means division is the only one of the basic 4 operations that can, and youll quickly find out that this isnt sufficient either. So the next obvious step to start trying is with exponentials. And again, using some logic, you can quickly narrow down possible combinations. If you use numbers with a large exponential, then the number will blow up way too big, and you wont be able to divide it back down with only the 4 numbers. So you should start with the small values, either with the 2 as the exponent, or as the base. That leaves you with only a handful of options to try. Then the only other way to quickly bring whatever number you produce back down to a smaller value is to divide it. So you already can quickly asses that the problem will likely be in the form X^Y/Z = W. With Y or X probably being the 2. Check a few answers and youll find the solution, check your answer on the 2nd rocket, and you have your pattern. If this formula didnt work, then you have to move on to more complex operations, but in this case it worked pretty fast.
But the point is, with some basic critical thinking and observations, you can create a logical way to break down the problem and vastly reduce your potential options for what to check, without having to brute force it. Recognizing these observations is a skill. A pretty useful one. Again, I use this same kind of problem solving all the time when I program. I use it for many other aspects of my life too, programming is just one of the few where it really sticks out quite often.
This specific problem may not be related to anything in real life directly, but its the METHODS for how to solve problems that is an important skill. Its the ability to reason through a problem and eliminate options that arent worth exploring so you can more quickly narrow down solutions that may actually work. Doing weird puzzles like this helps train that ability. It helps you to think about larger patterns and ways to systematically break down one big intimidating problem into several easier to solve smaller and simpler problems. Its the same skill.
The second sentence of the problem should read, "Using only the numbers given and using each number in each diagram only once for each equation, what is the missing number?"
I don’t think that’s necessary. In my opinion it’s easy to get that the question is meant to be answered in that way and to me it seems natural to look for a pattern using only the four numbers once but it also doesn’t stop you from finding a more complicated pattern that you can apply on all three diagram to find one definite solution for the problem that is also one of the four options if you like the extra challenge.
@@robins162 , True, but rewording the question makes it precise and also eliminates the need for multiple choice.
i don’t like that idea, sometimes is fun using a number more than once, on that line of thought also i didn’t like the “each rocket must follow an equation” from presh because sometimes it is solved across the drawings
@@elton8135 , We must ask what is the goal of the problem? One possible goal is to reach an expected answer. A different goal is to reach an explainable answer. Given the overall context of this puzzle, I conclude that the goal was the former.
@@steve_weinrich the multiple choice is unnecessary anyway, but its kind of a confirmation the pattern is the one that was supposed to be found. But does the question have to be precise? Why should you not allow alternative solutions (if there are any) for an extra challenge for those who want to try?
This feels like one of those questions that requires knowing what unit is being taught and what was focused on in class when the homework was assigned.
One key piece of missing info is that of the context of the question, which appears to be learning either order of operations or exponents. I'm sure if you were a student given this question all of your previous work would have lead into this and so you have pemdas or exponents on the mine. Without context (or pausing the video before the multiple choice answers pop up like me lol) an older person may over think it like it's some IQ puzzle.
That's always the problem with these things that get posted to the internet. The child has spent the last 4 weeks being shown similar problems at school, they understand what they're expected to do. Then their parent looks at the problem, has no context for what they're supposed to be doing, can't figure it out and declares that it's really difficult! Well, yes, without context EVERYTHING IS DIFFICULT.
Still, I figured this one out in 10 seconds because I just happened to see that 6^2 = 9*4
Answer is : 6
by the logic:
left bottom fin ^ top fin / right bottom fin =middle body!
I tried solving this if I was a 10 year old. At this age they only know addition, subtraction, multiplication and division. How on Earth would 10 yo boy know how to do powers
Yeah, figured out the same
Yup - took about a minute to see it
@@OlegHikaro Exponents are taught earlier than you think. 10 year old is 5th grade. I knew exponents by then, they arent THAT hard.
@@OlegHikaro it's literally introduced as part of 5th grade math curriculum. If anything, it makes _more_ sense that it would include exponents because it's literally the year they're explaining exponents.
The answer i got was 10, pattern being left fin plus double top fin minus quad right equals middle, 6 +2(2) - (4/4) = 9 and 4 + 2(3) - (32/4) = 2 so 12 + 2(2) - (24/4) = 10
Pretty good 👍🏻 (I was confused until I realized that quad meant a quarter, not a group of four)
Yeah you got it. Except for all the extra numbers you had to add.
I think you just made the problem 5 times more difficult than it is!
This is simpler answer than in the video as this doesn't require exponents.
You didn’t follow the rules laid out. It says that the numbers combine, it doesn’t say throw in any other numbers you feel like.
1:00 Left fin to the power of nose, divided by body equals right fin
Therefore it’s d) 6
This is an ill-posed question, since the phrase "... to make a valid equation" is ambiguous. For instance, we could simply look for a linear equation which works for both of the first two 'rocket ships'. In this interpretation, *any* of the five answer possibilities (a) through e)) can be made to be the "correct answer" to the problem (in fact, any number can be made to be the "correct solution"), which follows by straightforward linear algebraic reasoning.
True, a multiple choice question should be presented in such a way that there is only one correct answer.
Since this was brought up by a kid that couldn't solve it, maybe the original question was worded correct.
Just curious. What are the straightforward linear algebraic reasonings for the provided answers?
Are they actually easier than 6^2 / 4 ?
@@maartenverdouw4688well, let's say that number in the middle is some linear combination of other three, then we have 3 variables to work with, but only 2 given equations, so we can make third one any number we like and solution will exist, since that triples of numbers are linearly independent
I came to the same answer.
When I saw the 32 in the 2nd figure (large compared to figure 1) while it's other numbers are still small, I realise an exponent was needed.
The top clearly had to be the exponent to get a larger result in figure 2.
From there it was easy.
yup and its one of the easily spotted powers of 2 - so its pretty quickly clear that its gotta be 4 as the base (and 4^3 = 64)... at that point you already won, because the rest is confirmation and trivial calculation
Rocket puzzles need to be solved in stages.
I don't think many 10 year olds could work that out. I'd love to see a real percentage of how many could
I think a significant amount could.
Or you can just see it as a set of 3 linear equations of form:
ax + by + cz = d
where a is the number in the top piece, b is the one in the left fin, c is the one in the right fin, and d is the one in the main body.
x, y, and z are the numbers in the equation we're trying to find.
This system has a solution for each of the answers as d in the third equation, therefore making all the answers technically valid.
Answer e has the prettiest solution of this form:
2a + b - c/4 = d
but all of them are technically valid.
No exponents needed.
And in what country do they teach algerbra to 10 year olds?
@@bipolarminddroppingsit was an argument that proves every answer to be correct, not the expected solution
e) is also a possible answer by the following rule: central number=left+2*top-right/4
This seems like a more plausible answer than exponents for 10 year-olds. Also, the answer of 10 is also one of the multiple choices
I got that too, if multiple people can come to this answer and it doesn’t involve exponential, i think its correct
@@charleslivingston2256tbf it doesn’t actually say that the 10 year old was asked the question in school. He could’ve just found it on the internet on his own and asked his brother for help
The only issue is that if this is the intended way of doing it, where did the +2 to the left side number come from in the equation? /genq
@@table2.0it's plus twice the top number, not plus 2
Finally. The famous rocketequation. 😂
It's not rocket science!
e) 10 is also a correct solution!
Take the following definitions: left wing = A, right wing = B, tip = C and middle = D
One solution is: A - (B/4) + 2C = D
Case 1: 6 - 4/4 + 2x2 = 6 - 1 + 4 = 9
Case 2: 4 - 32/4 + 2x3 = 4 - 8 + 6 = 2
Case 3: 12 - 24/4 + 2x2 = 12 - 6 + 4 = 10
This is why I hate when problems don't let you show your work. Your answer is mathematically correct but the graders don't know and/or don't care!
Couldn't do it... After 15 minutes I just couldn't figure it out so I watched the solution
after 5 min of thinkin i turned off the video. hate this kind of puzzle.
solution came to me next day. still hate this kind of puzzle.
I went off on an entirely different tangent, but arrived at the same answer. Still involved exponents though
Aw, come on, there's nothing to hate, it's just a problem. I'm gonna use this opportunity to advertise for Khan Academy: on top of the valuable skills to learn, it really helps developing the kind of intuition around numbers that you need to quickly solve such problems !
I really feel math teachers give these to children just to get an ego boost because expecting a kid to solve something that not even most teenagers or even adults would seems rather odd
I think a better way to approach the problem is to think about the middle equation. 32 is a lot bigger than the other numbers, so the answer probably involves something like exponentiation (or it could involve multiplying by other constants). Then the top of the rocket is the only other number that increases from the left to the middle rockets, which means it would be the exponent. 2^3 * 4 = 32, and 4^3 = 32 * 2. Then 6^2 = 9*4 works for the first equation.
I got the answer 10 in the following way: left+middle+right, sum the digits until you get 1-digit number, then add one = top fin. I believe that comes more naturally to a 10-year old than exponentiation. And doubtless there are other ways.
You may introduce a rule such as "every rocket has exactly one odd number"
Took me a few minutes of staring at it to see the pattern. Key hints were that 6 has one of the factors of 3 needed to make 9, and the divisor is highly composite, again sharing factors with the base. I just had to spot the exponent.
From my experience dealing with these kind of puzzle,
first you try addition & subtraction,
if it fails then try to include multiplication & division,
if it also fails then try to include exponent,
it it still fails then try to include factorial.
It may takes longer, but it's a reliable SOP. 😅
@@gorilladisco9108 Yeah, definitely start simple. But it doesn’t take long for a combinatorial explosion to take hold. I was already considering combining numbers across groups instead of within. Simple enough as an idea. It would be fitting for a lateral thinking puzzle.
These words sound like literal rocket science to me and I was great at maths in school
The number in the nose cone tells you how many even numbers there are in the rest of the rocket. By this reasoning the correct answer is 13, the only odd option presented.
That was my first instinct, as well... but he wanted a "formula", so I kept looking.
But that’s not an equation using the numbers in the diagram
my answer was 13 too. but w/o the special nose meaning.
first two rockets both have 3 even and one odd number. so let's make the 3rd the same. and 13 is the only solution of the offered ones to achieve this.
I did not find the squaring solution. but I doubt it's the intended answer, as squaring is to advanced for 10 years old, I think.
and regarding 'it has to be an equation' ... it's unclear if that was part of the original question, actually.
@@THEDeathWizard87no it’s not an equation, it still works tho
@@Kero-zc5tc it doesn't, though. The question, as presented, says they all form an equation with the same formula. As far as I know, they only possible answer that works at a 5th grade math level is 6, because the pattern _has_ to include a common algebraic formula.
The top number shows the number of even numbers in the rest of the rocket... so the answer is c) 13, as the top number is 2 and there are already two even numbers there.
0 sense made
For me (as a programmer), 32 combined with 2 in same rocket helped to catch idea of make a power of some numbers, and i figured out in couple of minutes
So we're given f(6, 2, 4) = 9 and f(4, 3, 32) = 2
What is the function f? Since we have 3 variables and 2 examples the solution is not unique. Can you find ALL possible functions f?
@@IsZomg i guess there should be infinite number of possible functions f, but most simple one is likely the answer from the video:
f(x,y,z) = (x^y)/z
@@andreydeev4342 I saw 2, 32, and 4 were all powers of 2, but was too thrown off by the 3. Likewise, I saw that sqrt(4×9) = 6, but somehow didn't think to turn that into 4×9 = 6^2. Had I did, I probably would've gotten it right away.
"in the same way" is not defined. this could mean that the same operators are involved, but the order can be different. or, it could mean that the numbers must appear in the same order, but with any operators. or any other rule you can imagine.
communicate precisely or not at all.
I paused the video and didn’t realize it was multiple choice. Took a couple minutes before I hit upon the exponent idea, after that, simple.
Ditto!!
Same
Exponents it is!!! Person with quad fin idea is doodoo imo!!
Wait, it's multiple choice?! I saw this comment after I posted my answer 😂
I did exactly the same thing, but didn't find a solution. I've said before that inevitably I pause it to try and solve it, then restart the video, only to be immediately commanded by Presh to pause the video....
Problem with this puzzle is its not showing you are capable of performing algebra or calculus or something, nor is it a real world application where you can logically work through. Its trying to find a pattern with limited information, when the question, at a glance would make it appear to be something related to rockets, or geometry/areas of the shapes. When its just "deduce my pattern", the pattern could be anything, might as well ask what are the similarities between my shoes and a pile of rocks.
I can't believe it! I actually figured one of these out on my own. I now only feel *mostly* inadequate when watching this channel. 🙂
Now, the real question is: given any arbitrary ς, ε, ρ, τ, υ, θ, ι, α, σ, δ, φ, γ, that satisfy:
f(ς,ε,ρ,τ)=0, f(υ,θ,ι,α)=0, f(σ,δ,φ,γ)=0
is it possible to find that function f? Is it possible to derive a "systematic" way of doing so?
its 3 equations to 12 variables, at least 9 variables have to be given to not have infinite possibilities
I feel like exponents are a tall ask of a 10 year old. Pretty sure we were still learning to add and subtract fractions in 4th grade
I mean, I'm from Czechia and our school system is very different from USA, but we had to re-learn things all the time. I can't even remember what we did in 4th grade (9 or 10 years old)
instead of exponents, 10 year olds could think of it as the number of times to multiple the number by itself.
i.e. 12*12*12 instead of 12^3
@@mn1233 Right, but what I'm getting at is that's what an exponent is. The problem is asking you to develop an equation which can be used to extrapolate the last number in the last rocket. A 10 year old is going to be in the mindset of using basic functions. They won't think that 3 means multiply 4 times itself 3 times. If they do, they won't know how to express it.
@@limprooster3253 I suppose that I've watched kids do math and they all do it different ways. my 5 year old does basic multiplication using skip counting. as I think about this problem, and how I'd show it to her, I think I'd mention that 4 x 9 is 36 and you can divide it by 6 twice since 36 = 6 x 6 and there are two sixes. The second rocket is 2 x 32 and you can divide it by 4 three times since 64 = 4 x 4 x 4 and there are three fours. The last rocket would be her's to solve. She might be able to solve it using Math Notes.
@@limprooster3253 It all depends on how they solve it. It's plausible that someone would see the numbers "12" and "2" and then compute 12 x 12 to get 144; this result (144) can then be divided by 24 to get 6. They'd use that method based on the patterns that were observed in the first two examples; I say this because-- when I watch my daughter do mathematics, she uses her fingers to add "8 + 3" even though I told her to use "8 + 2" (10) + 1. IMO, the "mental math" suggestion should be obvious since she works a lot with "10 frames." But I have to take what I can get. Like, she is noticing the "5 in a row pattern" in a "10 frame" and will count 5, 6, 7, for example, to count seven dots. In the end, notational sophistication happens and exponents show up but "number sense" happens first.
I got it, but slightly different "wording" to get an equation.
Left fin to the power of nose cone is divided by fuselage to get right fin.
LF ^ NC / F = RF
With such questions we need context.
Particularly what they just learned.
Clearly they just learned exponents. Abd with that knowledge, we would have a starting point.
6. It took me about 1 minute.
1:15 the answer is13
There is another simpler pattern
Each rocket has three even numbers and one odd number
The first rocket has three even numbers (2-6-4) and one odd number (9)
The second rocket has three even numbers (4-2-32) and one odd number (3)
The third rocket has three even numbers (2-12-24) and one missing odd number
And as the available choices all are even except for 13 which is an odd number and thus it is the answer
And the valid equation made combining the numbers in the rocket is...?
I solved this, because when I noticed the top triangle was such a small number in all 3 examples, I had the idea that it might be being used as a power.
Figured it out pretty quickly after that
I don't like that the problem doesn't give a list of allowed operations.
That way we could implement an algorithimic procedure that alway terminates with the list of all possible legal patterns.
This way one has to "guess" which operations are valid and whicha are not.
Exactly. There's little context and barely a hint on what operation is involved
Well here is a potential option to obtain equations which could fit what we need since they match for Image_1 and Image_2.
Image_1:
6^2 / 4 = 9
36 / 4 = 9
Image_2:
4^3 / 32 = 2
64 / 32 = 2
So the result for Image_3 is:
12^2 / 24 = x
144 / 24 = 6
So the answer according to this option is (d) which is 6.
This was very tricky. You wouldn’t expe exponentiation in these type of problems.
You would if that's what you've been doing in class for the last 2 weeks.
Sometimes one finds a problem hard to solve, other times easy. For this one I found it easy, as it took me less than two minutes to crack the solution.
1:04 D. That's pretty slick for fourth grade
Gotta love it when i just give up and guess a random answer, and it turns out to be right.
All 3 rockets have a 2 on them.
"the numbers combine in the same way to make A valid equation"
You made 2 equations with those numbers and the solutions of each weren't any of them, so it's either wrong or those teachers should express themselves better when writing the instructions to solve the problem.
Stared at the cover frame for five minutes - No success
Go to watch video - When Presh tells me to figure it out on my own *boom* instant success
Same for me except I got it right before he says "thanks for making us the best community in TH-cam"
I love how they put it inside a rocket to make it look way more fun for a 10 year old than it actually is
Addition, multiplication and division did not yield a pattern as the numbers were all increasing in different patterns and factors were all wrong for a pattern too. I tried a couple of other things too, But once I started on the exponential route it came out fairly easily.
I found that the real key to success with this problem was to eat pasta after not getting the answer, then try again. I recommend a sauce with tomatoes, courgettes and cheese... That 17 year old needs to change his/her diet!
got it within a minute or three, but only by guessing and trying out if the guess worked or not.
didn't even think of doing factorization.
What about e)10, to wit: (6 + 2(2) - 9) * 4 = 4, (4 + 3(2) - 2) * 4 = 32, (12 + 2(2) - 10) * 4 = 24
I agree
I managed to solve it. I applied the logic with even numbers, that, multiplication, addition and subtraction wasn't getting us there for the first ship. So I played around with division, and when that didn't work, I tried exponents and found the solution. I didn't think about prime factors, exponents were just the next thing I could think of to try.
0:00 captions Hey this is “Press Tow Walker” 💀
For me, I instantly realised the top numbers were all small, so I thought they either were to do slight addition changes, or double/tripple a value
But after a while exponents came up in my head, and I thought "no that can't be, you don't learn about those that early on", but tested it anyways
Got the answer 6, unpaused the video, and only then realised it was multiple choice (but so did apparently everyone else as well)
Exponentialrechnung mit 10 Jahren... hmmm... nenene
Top 3 dumbest things you can do
3: Eat a Tide pod
2: Touch a hot stove with your finger
1: Pursue a math degree
I may not be able to do any of the hard questions on this channel, but I’m proud to say I’m capable of doing the maths homework of a 10 year old
I was not able to solve this one. Maybe I could have with more time, but I didn't want to take more than 3 minutes starting at it.
i'm right therewith ya, buddy. i've been out of school for almost 60 years.
Yes, didn't seem that hard having studied science at university. But ... I think the kid was having fun. His class must have practiced exactly this problem pattern in class, but big brother wasn't told how to do it.
@@nickronca1562 Generally the trick with these problems is that after a minute of trying the 4 basic operations, its almost always an exponential. You can pretty quickly verify that the 4 basic operations dont work alone, and once you add in exponentials, there are only a few things to try that make any sense. You cant use the bigger numbers as the exponents, or values are going to blow up, so you start with the small stuff.
In that first rocket, you have only 5 possibilities to try. 6^2, 4^2, 9^2, 2^4, and 2^6. Anything else is going to blow up way too fast and be unusable. Once youve tried those 5 possibilities, there isnt much left to try other than dividing the result by one of the remaining numbers. And that happens to be the solution, once you try 6^2. Then you can test it on the 2nd rocket, and you know you have your answer.
Thats pretty much always the trick to these kinda problems. Once you recognize it, its pretty quick to solve basically any easy problem of this type. More complex problems would still pose an issue, but those ones arent going to be given to a 10 year old, and those types of harder problems usually dont go viral.
So I looked at the thumbnail and didn't know that it was a multiple choice question till around 1:17 in. I worked it out with some back and forth and I'm glad to see 6 is part of the possible answers. I'll continue to watch now to see if I was right
Love this!! 💗
Took about 2 minutes in head before seeing the possible answers.
Reasoning:
- Assume one number was going to be an exponent, because without such shenanigans, it wouldn't be a notable problem.
- To keep the numbers of manageable size, the exponent has to be small. Only the top position is small in all three cases, so the top is probably serving as an exponent.
- For the first one, 9 has two 3's as factors, but 6 only has one 3, and this is a squaring example, so try 6^2 / 9 and it works.
- Same thing works for the second case, so the formula is known, so the answer comes from 12^2/x = 24, so x = 6.
Got it right away. Feels good lol
The top entry is also counting how many of the other entries are even. Thus, (c) is a possible answer (and also the unique correct one from the given possibilities). Some possible equations for this rule, with L, R, C, T denoting the entries on the left, on the right, in the centre, and on top, respectively, would be
1 = L+C+R+T mod 2,
gcd(L+C+R+T,2) = 1,
T = gcd(2,L) + gcd(2,C) + gcd(2,R) - 3,
or
T = log_2(gcd(2,L)) + log_2(gcd(2,C)) + log_2(gcd(2,R)).
Think I got it. Little tricky but not too hard. LOL I paused and solved it before the multiple choice answers were shown.
You don’t need to know exponents (although that is the way I solved it in a minute or two).
Take the number in the left fin and multiply it by itself the number of times that the nose cone says.
Divide your answer by the number in the right fin and you end up with the main body of the rocket.
So 9 = 6*6/4; 2 = 4*4*4/32 and ? = 12*12/24 =6
This is such an arbitrary way of making a problem.
What even is the point of the shape?
The positions and the age (if you can remember primary school) give a clue. 6² = 9•4, 4³= 2•32, 12² = 6•24.
it's (a*b)^(1/c)=d
so the answer is 6 because (6*24)^(1/2)=12
Took a minute of guessing and testing all possible equations involving the first set of numbers. Once it was determined that (6^2)/4 = 9, to then figuring out the equation was basically (a^b)/c=x.
This question -- I think -- is really just tasking the student with using their cumulative mathematical knowledge to try every possible combination they know against an applicable pattern.
What country are they from? I started high school at age 12 and I'm pretty sure I didn't learn exponentials until 13 or 14. Certainly not at 12 or prior. And this is homework for age 10? Where?
What years did you attend school in?
Exponents were taught at ages 7-8 in America during the 2000s.
@@kendraroth1276r/iamverysmart
@@kendraroth1276do you mean grades or years of attending school 7-8? That’d be 13 years old assuming starting school at the age of 6 and learning it in grade 7
@@speedcat5477 No I mean at ages 7-8. second grade and third grade. Can’t speak for everyone but in America, we usually start school at age 5.
@@kendraroth1276 As an American, I was not taught exponents in second or third grade. I know a friend's third grader was being taught coding, but that was like 2019.
Giga-brain alternative answer:
Convert the numbers to English words and count the letters in each word. Then, multiply the letter counts, and sum the digits.
1. “Two” = 3 letters, “six” = 3 letters, “four” = 4 letters. 3*3*4=36, 3+6 =9
2. 5 (“three”) * 4 (“four”) * 10 (“thirtytwo”) =200, 2+0+0 =2.
So, naturally:
3. 3 (“two”) * 6 (“twelve”) * 11 (“twentyfour”) = 198, 1+9+8 =18
I really dislike “find the next number in the series” kind of problems. Hey, maybe there’s a random-number generator.
Those are fun 🤓
The next number in the series is found by asking the one that created the question.
I got the solution very quickly because of the hint in the instruction. It has to be a valid equation, not just a pattern. I was looking at all of the rockets, not the left one only. In the middle, there is a high number (32) that may only be calculated using the power of some of the other numbers.
solved it before before the photons of my screen hit my eyes
What almost immediately tipped me off that exponents were involved was the number 32. That is a very large number compared to 2, 3, and 4; with multiplication the largest number you can produce with them is 24. After that it was easy to find the pattern by trial and error. It easily took me less than 5 minutes to solve.
This is nonsense.
There's an infinity of functions that have f(2,6,4)=9 and f(3,4,32)=2 so the value of f(2,12,24) is undetermined. You can choose the value you want. -1/12 for example 😅
The question is: want was the last lesson of the brother about?
1:14 paused to answer. It's 6. Let left fin be "l", right fin "r", nose "n", and body "b". Given the supplied values, the equation we're looking for is l^n÷r=b (6²÷4=9, 4³÷32=2, 12²÷24=?, and ? is 6 because that's what 144 divided by 24 is).
gotta keep in mind this is the homework of a 10 year old.
i highly doubt 10 year olds are working with exponents at their current level.
especially considering the current state of education, and the level that most kids are these days.
everyone here is severely overcomplicating this "puzzle"
because that's what it is, a simple puzzle.
so think simpler.
much, much simpler
you had it at the start, the first "rocket" (which is another hint as to why you are overthinking this, its a rocket, a child like rendition of a rocket.) has 3 even numbers, and 1 odd number.
the second rocket, has 3 even numbers, and 1 odd number.
looking at the answers and the numbers filled in the third rocket.
we got 3 even numbers, only 1 odd number in the answer sheet.
it's C) 13.
it's the homework of a 10 year old!
STOP OVERTHINKING THESE THINGS!
Got it within 3 minutes..and i paused even b4 the options were displayed! The answer is 6...as soon as i saw the question, i quickly ran all kinds of arithmetic with the first rocket numbers, then tried to check if that sequence of arithmetic matched with the second rocket😅
i doubt that this is the correct answer, since it is given to 10yo students
That’s a 10 year olds problem? Wow. Good question. Love to know how many in that class got it right.
the number is 174/11, because OBVIOUSLY the pattern is that you multiply the left number by 35/22, the right number by -3/22, the top number by 0, and sum them.
Yeah. That is why these questions suck.
It's a cool question. You just gave up. But it's ok to fail sometimes, you don't need to feel ashamed. We all do fail sometimes✨️
@@Q-hv2cb what? My point is that there is no single solution for this kind of question.
Answer: 6
The top triangle is the exponential value of the left triangle. Divide the number you get with the value of the rectangle to get the value of the triangle on the right.
12²/x = 24
144/x = 24
144 = 24x
144/24 = x
6 = x
Can someone actually fckin explaing to me how his solutions is supposed to be done by a 10 yrs old kid?
How is this task even suitable for a 10 yrs?
Maybe the kid wasn't American
u guys dont learn exponents in grade 4?
I've been subscribed to this channel for many years, and this might be the first time I remember ever actually figuring it out myself and did it quite quickly. I see people saying they hate these kinds of problems because you have to guess what the writer was thinking, but I think it is more pattern recognition than anything.
The middle one, I immediately had some intuition because whenever I am asked to find a correlation between 2,3,4, and 32 I think exponents. And from there it's pretty much down to figuring out whether 2 or 4 was going to be the base (because 32 suggests that it would not be 3). Finally, 4 months later my math degree has come in handy. I am proud.
I got this one is 3 seconds. Last time I finished this quick, my wife was very disappointed.
I figured the (an) answer pretty quickly once I noticed that the value in the bottom right part of the rocket grew pretty quickly even with small increases in the upper and lower left parts. That tipped me off that one of the parts had to be an exponent. It was pretty easy to guess that the upper part was the exponent and the rest was simple trial and error.
How evil would it be if I used this as a puzzle in my D&D campaign?
Depends on the players, but unless the entire table is interested in this kind of puzzle or someone is really good at them and gets the answer very quickly, you're likely to have some bored and uninterested players for a while. If I wanted to give my players this kind of puzzle, I would make sure that solving it was completely optional, and maybe try to give them a look at the puzzle at the beginning of a session so the players who are interested can think about while the party does other things in game and can come back to it later, possibly even a later game session.
I'm going to use it because I know that some of the players enjoy it and will solve it in a few minutes.
If you call it evil because you know your players hate it, maybe reconsider.
If you fear that it takes too long, present it in such a way that they can munch on it between sessions.
A puzzle that all my players enjoyed is the one with the billiard balls. (Where you have to rotate the 9 to make it a 6 to be able to add up to an odd number)
Answer is 6. I did it in 2 mins. The main clue to notice here is that even though the 2 of the outside numbers are small for the both images, the result of image 1 is relatively large when compared to image 2. So what differs so drastically between 1st and 2nd figures? The numbers 4 and 32 on the bottom right. Since the result of image 2 is very low compared to image 1, in some way, division must be involved using the numbers 4 and 32 as denominators for each image. From there, it's easy to figure out the rest.
No need to calculate anything. Each rocket has one odd number. The answer is 13.
Why 13 and not 11?
@@gorilladisco9108 Because it is option C in the list of possible answers. This task is more about attention than about math ;)
13 is not an equation.
Correction: "Odd" is not an equation.
So the first thing I noticed when I approached this puzzle was that the relationship between the centre number and the right wing number wsa inversely proportional, which suggested that the central one was probably a divider. From there I looked at 9x4 being 36, and asked how can I combine 6 and 2 to make that, and it all slotted into place from there. Solved in under 30 seconds. :)
Couldn't tell you how but I saw that successful pattern immediately. So I solved the problem in less than 10 seconds.
I'll take it.
Same here😂
Didnt see comments, at 0:01. The answer should be 6. Left to the top divided by right.