Max Mergenthaler and Fede Garza - Quantifying Uncertainty in Time Series Forecasting

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 ธ.ค. 2024

ความคิดเห็น • 7

  • @mapi55555
    @mapi55555 ปีที่แล้ว +3

    Is there a video for anomaly detection using Nixtla?

  • @duynguyen4154
    @duynguyen4154 ปีที่แล้ว +3

    Really interesting library. I have questions which maybe someone can answer here: 1) Can we use our custom model like neural network or LSTM? and 2) How this library assure the time series is exchangeability for the conformal prediction?

  • @paxcema
    @paxcema ปีที่แล้ว +1

    Awesome talk!

  • @laavispamaya
    @laavispamaya 9 หลายเดือนก่อน

    Great talk, tons of thanks

  • @dennis_doom
    @dennis_doom ปีที่แล้ว

    How can we provide confidence intervals for classic statistical models that are not stochastic?

  • @rururu_en
    @rururu_en 3 หลายเดือนก่อน

    awesome speech, thanks!
    can't believe noone asked about model selection or current sota's
    been using boostings for forecasting for like 4.5 years already and still can't be beaten as an optimal prod solution. What are you using mostly as a compromise between quality and speed (+scalability), what about self-attention and CN-based attention nets? let aside interpretability

  • @AnaSofiaVazquezG
    @AnaSofiaVazquezG ปีที่แล้ว +2

    Nixtla