Pohlig-Hellman Algorithm

แชร์
ฝัง
  • เผยแพร่เมื่อ 9 ม.ค. 2025

ความคิดเห็น •

  • @ddxfraxinusdne
    @ddxfraxinusdne  9 ปีที่แล้ว

    Julio Albuja At 3:25, I was referring to the alpha and beta calculation when I said "both numbers." Specifically, find 12^(40/2) = ?? mod 41 AND find (7^(40/2))^(Xo) = ? mod 41. Then I compared them on the next line. Does that answer you question?

  • @SafeerKM7
    @SafeerKM7 10 ปีที่แล้ว +3

    There is a small mistake in the presentaion, where you find x2, when q=2 your beta2 should be beta1*alpha^-(2*x1). Since here x1 is 0, it doesn't make any change in the final answer.

    • @ddxfraxinusdne
      @ddxfraxinusdne  9 ปีที่แล้ว

      Good catch Safeer KM , thanks.
      I added an annotation to note this in the video.

    • @QuickQuery
      @QuickQuery 6 ปีที่แล้ว +2

      Where does this "2" come from? What is the equation for this coeffcient? What if we had 2^4 instead of 2^3 ? What would be coefficient then?

    • @SayoojSamuel
      @SayoojSamuel 6 ปีที่แล้ว

      I actually was about to post it now. The implementation gave error for large values. Had to figure it out from www-math.ucdenver.edu/~wcherowi/courses/m5410/phexam.html

  • @joeydevries
    @joeydevries 10 ปีที่แล้ว +3

    Thank you for doing this, helped me understand the algorithm :)

  • @capnhatrick4402
    @capnhatrick4402 5 ปีที่แล้ว +2

    My notes say that B2 = B1(alpha)^(-x1 * q). Is the power mislabeled in this video?

  • @backoffer3228
    @backoffer3228 4 ปีที่แล้ว

    Your explanation helped a lot. Thank you very much

  • @yuqingyang5282
    @yuqingyang5282 4 ปีที่แล้ว +1

    Why q1 = 2^2 at time 5:29?

  • @AlienwarEU
    @AlienwarEU 8 ปีที่แล้ว +5

    pleasant voice to listen to, helpful & i like the way u explain..
    but can i solve a CRT-Eq-System with 3 or more equations, the same way like u did ?

  • @forthner
    @forthner 9 ปีที่แล้ว

    Interesting, but since minute 3:25, what do you mean calculate both numbers?

  • @bobbyquaden
    @bobbyquaden 9 ปีที่แล้ว

    Thank you, this saved me so much time!

  • @sladuran69
    @sladuran69 8 ปีที่แล้ว

    4:54 - how do you calculate (7)^-1 ???

    • @ddxfraxinusdne
      @ddxfraxinusdne  8 ปีที่แล้ว

      Hi, there's a few ways to do inverse numbers. What I did was this:
      7^(-1) is 1/7
      and 1/7 mod 41 = x (x is the whole number we're trying to find)
      Do a little algebra and get 1 mod 41= 7x
      We also know that 42 = 1 mod 41
      So 42 = 7x
      Then x = 42/7 = 6
      Hence 7^(-1) = 6 mod 41

  • @boyankushlev8446
    @boyankushlev8446 5 ปีที่แล้ว

    How about when you get a beta different from 1 or -1? Like how about 101 (mod 353) = -1 ^ x (mod 353)?

  • @mpmfrans
    @mpmfrans 5 ปีที่แล้ว

    Are you still reading this? I have an important question!

  • @beckryanperson
    @beckryanperson 6 ปีที่แล้ว

    I'm confused as to how you got -1(mod 41) = (-1)^x0(mod 41) ? Could you please help me with this step? When I take 12^(40/2) = 12^(20) (mod 41) I get 18. Where does the -1 come from?

    • @SayoojSamuel
      @SayoojSamuel 6 ปีที่แล้ว

      fermats little theorem provides for a^(p-1) == 1 (mod p). Now for an unknown `x`, a^x == -1 (mod p) will give x = (p-1)/2. This can be proved by squaring both sides of the equation a^x == -1 (mod p). Implies, a^2x == 1 (mod p). Again using fermat's theorem, 2x == p-1 or x = (p-1)/2

  • @mhk1982
    @mhk1982 9 ปีที่แล้ว

    Where does the negative sign comes from in power of alpha when finding Beta 1 and Beta 2, Will highly appreciate the explanation

    • @ddxfraxinusdne
      @ddxfraxinusdne  9 ปีที่แล้ว

      +M Hk198 I'm sorry to say I honestly don't remember where it comes from, other than that it is simply part of the formula used to calculate betas. The formula for calculating any given beta is the following (and I used just "sub(x)" meaning "subscript x"):
      Bsub(j+1) = [Bsub(j)]*[Alpha^(-Xsub(j)*q^j)]
      ...the negative in front of the X is the one I believe you are referring to.

    • @ddxfraxinusdne
      @ddxfraxinusdne  9 ปีที่แล้ว

      +M Hk198 Also, this link may or may not help:
      anh.cs.luc.edu/331/notes/PohligHellmanp_k2p.pdf

    • @mhk1982
      @mhk1982 9 ปีที่แล้ว

      +Theoretically Thanks a lot for the explanation and a link.

  • @brc9428
    @brc9428 8 ปีที่แล้ว

    Thanks for the video it's so helpfull for me. But a have question, ıf the mod number not a prime I mean what if for example it gives us mod(5×17=85)
    Still do we do the same procedure?

    • @ddxfraxinusdne
      @ddxfraxinusdne  8 ปีที่แล้ว

      +burcu sunturlu As a general rule, when computing discrete logs (such as with the Pohlig-Hellman algorithm), the mod will not be prime. The mod will be primes multiplied together. But regardless, yes--it should be the same procedure. In your example though (p=85), you would want to factor 85-1 = 84 = 2*2*21.
      However, I'm not sure I understood your question; if not feel free to ask again.

    • @brc9428
      @brc9428 8 ปีที่แล้ว

      +Theoretically Now ı understand better with your answer, thanks a lot..

    • @brc9428
      @brc9428 8 ปีที่แล้ว

      +Theoretically The example ı gave mod 85
      85-1=84=2*2*3*7
      ı mean first we do pohlig hellman algorithm and we do Chinesee remainder theorem for 3 equation
      Is this true?

  • @vikas_garg4
    @vikas_garg4 5 ปีที่แล้ว

    how did you calculated the valueof x0 = -1 mod 41

    • @indiccause2506
      @indiccause2506 5 ปีที่แล้ว

      Bcoz 7^20=40mod41 , which can be written as 7^20=-1mod41( as subtracting 40 or adding -1 makes the 7^20 divisible by 41),we use -1 to make it look less weird

  • @kathir2239
    @kathir2239 หลายเดือนก่อน

    Are you working in NASA ryt now?

  • @narendrakumariitb
    @narendrakumariitb 9 ปีที่แล้ว

    (Y) Understood completely, thanks :)

  • @redaabakhti768
    @redaabakhti768 ปีที่แล้ว

    Thanks!