Causal Effects | An introduction

แชร์
ฝัง
  • เผยแพร่เมื่อ 6 ม.ค. 2025

ความคิดเห็น • 13

  • @ShawhinTalebi
    @ShawhinTalebi  2 ปีที่แล้ว

    Correction @5:26 - I meant to say "average treatment effect" 😅

    • @ShawhinTalebi
      @ShawhinTalebi  ปีที่แล้ว

      More in this series 👇
      Propensity Scores: th-cam.com/video/dm-BWjyYQpw/w-d-xo.html
      Do-operator: th-cam.com/video/dejZzJIZdow/w-d-xo.html
      DAGs: th-cam.com/video/ASU5HG5EqTM/w-d-xo.html
      Regression techniques: th-cam.com/video/O72uByJlnMw/w-d-xo.html
      Intro to Causality: th-cam.com/video/WqASiuM4a-A/w-d-xo.html
      Causal Inference: th-cam.com/video/PFBI-ZfV5rs/w-d-xo.html
      Causal Discovery: th-cam.com/video/tufdEUSjmNI/w-d-xo.html

  • @yasi_mzrk
    @yasi_mzrk 7 หลายเดือนก่อน

    Thank youuuuuuuuuu! I was really confused before I discover your channel by sudden.You really are helping me prevent failing:)) Merci

  • @juandavidmunoz2781
    @juandavidmunoz2781 11 หลายเดือนก่อน

    This is a one million times better explanation than my professor. Thank you sir!

    • @ShawhinTalebi
      @ShawhinTalebi  11 หลายเดือนก่อน

      Glad it made sense :)

  • @mahdidehshiri1832
    @mahdidehshiri1832 2 ปีที่แล้ว +1

    Thank you so much for your great explanations

  • @ketalesto
    @ketalesto 2 ปีที่แล้ว +1

    Thank you! Great content

  • @mehmetkazanc5855
    @mehmetkazanc5855 ปีที่แล้ว

    Hi Shawhin, thanks for the valuable information in the video. I have one question.
    What if we have more than 1 treatment effect in the post-period?
    Let's think about a campaign & sales scenario. We were using 3 campaigns and then we launched 2 more campaigns at a certain time (became totally 5). In the case of 1 newly launched campaign, I was planning to use a causal model to learn its effect but 2 campaigns together will create noise. How can I distinguish their effect from each other ? Do you know any alternative method for it?

    • @ShawhinTalebi
      @ShawhinTalebi  ปีที่แล้ว

      That’s a good question. Applying this stuff to the real world is often non-trivial, so it’s hard to say what would be best for your specific use case. But here are a couple thoughts.
      For flavor of causal effects I talk about here, it’s critical to have a control group to which you can compare all other treatment groups.
      For a sales/marketing case where you have multiple campaigns which impact a handful of kpis over time, it is more difficult to define the causal effect. However it is possible if you are able to reasonably model how variables interact. I find drawing out a causal graph to be a helpful first step.

    • @mehmetkazanc5855
      @mehmetkazanc5855 ปีที่แล้ว

      @@ShawhinTalebi Thank you :)

  • @ifycadeau
    @ifycadeau 2 ปีที่แล้ว +1

    Great video!