AI for Drug Design - Lecture 16 - Deep Learning in the Life Sciences (Spring 2021)

แชร์
ฝัง
  • เผยแพร่เมื่อ 30 พ.ย. 2024

ความคิดเห็น • 38

  • @bitbybit5770
    @bitbybit5770 3 ปีที่แล้ว +28

    It's great that lectures like these are publicly available.

    • @LAinLA86
      @LAinLA86 2 ปีที่แล้ว +1

      The guy interrupts waay too much, he's so annoying..my goodness

    • @lecturerecordings9293
      @lecturerecordings9293 ปีที่แล้ว +4

      @@LAinLA86 As a ML scientist working in the same area of research I found Prof Kellis' questions really insightful. Many of the questions he asked were what I wanted to ask at those moments.

    • @JiongDu
      @JiongDu หลายเดือนก่อน

      @@lecturerecordings9293 Yes i agree

  • @ASHARAHMAD799
    @ASHARAHMAD799 2 ปีที่แล้ว +6

    This is an excellent resource for getting to know GNNs in drug de novo drug design, thank you!

  • @hamseokgyun6939
    @hamseokgyun6939 2 ปีที่แล้ว +2

    thank you so much for sharing this valuable lecture about GNNs in drug discovery. The idea of junction tree VAE is awesome and making sense

  • @jianyuli2179
    @jianyuli2179 3 ปีที่แล้ว +9

    Great lecture! Thank you very much for uploading this. I just got two questions:
    1. We know that drugs are 3D when they bind to their targes. But the grape in GNN is a 2D representation of drug structures. For some drugs which are only active in one enantiomer form not the other one, the 2D graph will be the same for the two enantiomers. How can GNN capture this stereochemical difference?
    2. Remdesivir used in the ComboNet on slide 36 is a prodrug, its active form is a metabolite which is a triphosphate. I suppose most of the drugs used in the training are not prodrug, so I'm curious about whether remdesivir or it's active form is used in the work? Did the author consider this?

    • @jessedeng3300
      @jessedeng3300 2 ปีที่แล้ว

      Add geometric data such as bond angle etc.. to the bond embedding vector is one approach perhaps

    • @jianyuli2179
      @jianyuli2179 2 ปีที่แล้ว

      @@jessedeng3300 Thanks for the reply. I learned afterwards that chirality information of atoms (nodes) are used as descriptor.

    • @rbzhang3374
      @rbzhang3374 ปีที่แล้ว

      Adding 3D hasn't seen much progress so far. One reason is 2D structure is informative enough, the other is 3D structures is deeply corresponding to its 3D conformer, which is very hard to determine or predict.

  • @alessandroscarcella7805
    @alessandroscarcella7805 3 ปีที่แล้ว +1

    Brilliant! Thanks for making this available

  • @ravisa2301
    @ravisa2301 ปีที่แล้ว

    How this is different from QSAR using graph theory descriptors with 1D,2D, and 3D info

  • @PhilipAlabiephraim
    @PhilipAlabiephraim 3 ปีที่แล้ว +1

    Great lecture. For the compound on the right at 47.36min with better MIC, did you observe the different moieties by cleaving the azo bond? It is my guess that the aminosulphonamide or the hydrazine analog may be the actual active drug and not the whole compound shown.

  • @annapurnasatti8650
    @annapurnasatti8650 2 ปีที่แล้ว +2

    An amazing lecture indeed. I just wanted to clarify as to how the viral/host targets are represented or vector encoded in the combonet model.

  • @ntej7927
    @ntej7927 ปีที่แล้ว

    Good Information - Thanks for the presentation.

  • @sanyo8440
    @sanyo8440 ปีที่แล้ว +3

    Thats unfortunate, you have to work with those types in the top left corner. Yeesh.

    • @ryanelam4472
      @ryanelam4472 9 หลายเดือนก่อน

      Who are you referring to?

  • @JanSchultink
    @JanSchultink 2 ปีที่แล้ว

    Thank you for sharing this!

  • @flynnpaul26
    @flynnpaul26 2 ปีที่แล้ว

    2.6B only when considering the failures, so for a startup looking to raise money, its not as important. Rather the average cost to get one drug into FIH trials is more relevant, and then how much to get the $ to run the phase 1 trial. The 2.6B is more a big pharma number.

  • @joehua2580
    @joehua2580 3 ปีที่แล้ว +1

    Amazing lecture !

  • @yulishe9911
    @yulishe9911 2 ปีที่แล้ว

    very helpful! great lecture!

  • @mohamedelkerdawy7771
    @mohamedelkerdawy7771 3 ปีที่แล้ว

    Thanks. Super quality.

  • @henrytong4229
    @henrytong4229 2 ปีที่แล้ว

    Thank you. The lecture is great.

  • @jeetsg1316
    @jeetsg1316 3 ปีที่แล้ว +4

    keep it up

  • @JAlanne
    @JAlanne 3 ปีที่แล้ว

    life saving lecture omg

  • @ThePishty1
    @ThePishty1 3 ปีที่แล้ว

    is ComboNet publicly accessible?

  • @fairuzshadmanishishir8171
    @fairuzshadmanishishir8171 3 ปีที่แล้ว +1

    great content

  • @JENNIFER2016
    @JENNIFER2016 10 หลายเดือนก่อน

    Hi Wengong, I’m thinking about starting up a Biotech company for a widespread unmet medical need and am currently seeking capital. If and when that happens, I will be seeking scientists who can assist with advancing a therapeutic solution for this critical global disease.. I think GNN would be a worthwhile starting point in my endeavor, might you be interested in assisting? Kind regards, Jennifer

  • @dh-nj6914
    @dh-nj6914 ปีที่แล้ว

    I'm sorry Dave, I'm afraid I can't do that.

  • @MrRomiBajwa
    @MrRomiBajwa 3 ปีที่แล้ว

    Ambitious I like...🤓

    • @MrRomiBajwa
      @MrRomiBajwa 3 ปีที่แล้ว

      Too bad had to skip over the COVID part due to PTSD 🤣

  • @Intaberna986
    @Intaberna986 ปีที่แล้ว

    "it comes from a novel called Space Odissey..."
    Zoomers will zoom.

  • @TwoPartyIllusion
    @TwoPartyIllusion 3 ปีที่แล้ว +2

    why look for a cv19 drug? There are so many more deadly conditions to treat that need drug discovery!

  • @praveenjkpg
    @praveenjkpg ปีที่แล้ว

    1000th like
    😉

  • @SaudiaFerguson
    @SaudiaFerguson 5 หลายเดือนก่อน

    Good morning ❤❤🎉😊😊😊

  • @dollardebt8521
    @dollardebt8521 2 ปีที่แล้ว

    Awesome lecture!