Introduction to Bayesian Additive Regression Trees (BART) for Causal Inference

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ม.ค. 2025

ความคิดเห็น • 5

  • @benjamintreitz1647
    @benjamintreitz1647 3 ปีที่แล้ว +1

    this is a great presentation - thanks for uploading!

  • @nuhuhbruhbruh
    @nuhuhbruhbruh 4 ปีที่แล้ว +5

    39:10 for list of references

  • @the_notorious_bas
    @the_notorious_bas 3 ปีที่แล้ว

    As for those model comparisons (bias/RMSE), I assume these stats are based on the training set? If so, than I would rather see the RMSE stats on a hold-out test set as a fair comparison for robustness.

    • @putnamdatasciences1309
      @putnamdatasciences1309  3 ปีที่แล้ว +2

      The RMSE was with respect to estimating a marginal causal effect across thousands of datasets. It had nothing to do with the accuracy of the outcome predictions. For details on the 2019 ACIC Data Challenge see sites.google.com/view/acic2019datachallenge/home

    • @the_notorious_bas
      @the_notorious_bas 3 ปีที่แล้ว

      ​@@putnamdatasciences1309 Thank you for providing this context. I like the thought process behind this ML algo, so I will definitely run some tests.