Can you find the area of the Green shaded triangle? | (Square) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 10 ก.พ. 2025
  • Learn how to find the area of the Green shaded triangle. Important Geometry and Algebra skills are also explained: Pythagorean theorem; area of the square formula; area of the triangle formula. Step-by-step tutorial by PreMath.com
    Today I will teach you tips and tricks to solve the given olympiad math question in a simple and easy way. Learn how to prepare for Math Olympiad fast!
    Step-by-step tutorial by PreMath.com
    • Can you find the area ...
    Need help with solving this Math Olympiad Question? You're in the right place!
    I have over 20 years of experience teaching Mathematics at American schools, colleges, and universities. Learn more about me at
    / premath
    Can you find the area of the Green shaded triangle? | (Square) | #math #maths | #geometry
    Olympiad Mathematical Question! | Learn Tips how to solve Olympiad Question without hassle and anxiety!
    #FindGreenArea #Square #Rectangle #GeometryMath #PythagoreanTheorem
    #MathOlympiad #IntersectingChordsTheorem #RightTriangle #RightTriangles
    #PreMath #PreMath.com #MathOlympics #HowToThinkOutsideTheBox #ThinkOutsideTheBox #HowToThinkOutsideTheBox? #FillInTheBoxes #GeometryMath #Geometry #RightTriangles
    #OlympiadMathematicalQuestion #HowToSolveOlympiadQuestion #MathOlympiadQuestion #MathOlympiadQuestions #OlympiadQuestion #Olympiad #AlgebraReview #Algebra #Mathematics #Math #Maths #MathOlympiad #HarvardAdmissionQuestion
    #MathOlympiadPreparation #LearntipstosolveOlympiadMathQuestionfast #OlympiadMathematicsCompetition #MathOlympics #CollegeEntranceExam
    #blackpenredpen #MathOlympiadTraining #Olympiad Question #GeometrySkills #GeometryFormulas #Angles #Height #ComplementaryAngles
    #MathematicalOlympiad #OlympiadMathematics #CompetitiveExams #competitiveExam
    How to solve Olympiad Mathematical Question
    How to prepare for Math Olympiad
    How to Solve Olympiad Question
    How to Solve international math olympiad questions
    international math olympiad questions and solutions
    international math olympiad questions and answers
    olympiad mathematics competition
    blackpenredpen
    math olympics
    olympiad exam
    olympiad exam sample papers
    math olympiad sample questions
    math olympiada
    British Math Olympiad
    olympics math
    olympics mathematics
    olympics math activities
    olympics math competition
    Math Olympiad Training
    How to win the International Math Olympiad | Po-Shen Loh and Lex Fridman
    Po-Shen Loh and Lex Fridman
    Number Theory
    There is a ridiculously easy way to solve this Olympiad qualifier problem
    This U.S. Olympiad Coach Has a Unique Approach to Math
    The Map of Mathematics
    mathcounts
    math at work
    Pre Math
    Olympiad Mathematics
    Two Methods to Solve System of Exponential of Equations
    Olympiad Question
    Find Area of the Shaded Triangle in a Rectangle
    Geometry
    Geometry math
    Geometry skills
    Right triangles
    imo
    Competitive Exams
    Competitive Exam
    Calculate the length AB
    Pythagorean Theorem
    Right triangles
    Intersecting Chords Theorem
    coolmath
    my maths
    mathpapa
    mymaths
    cymath
    sumdog
    multiplication
    ixl math
    deltamath
    reflex math
    math genie
    math way
    math for fun
    Subscribe Now as the ultimate shots of Math doses are on their way to fill your minds with the knowledge and wisdom once again.

ความคิดเห็น • 56

  • @yalchingedikgedik8007
    @yalchingedikgedik8007 4 หลายเดือนก่อน +1

    Thanks Sir
    That’s wonderful method of solution
    Thanks for your efforts
    Good luck
    ❤❤❤❤

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      So nice of you dear
      You are very welcome!
      Thanks for the feedback ❤️

  • @Mastero-dj4uw
    @Mastero-dj4uw 4 หลายเดือนก่อน +4

    Great problem !
    Another shortcut I would like to share is knowing the concept that says : " If a point inside a parallelogram is connected to its verticies creating 4 triangles , then the sum of the areas of any two opposite triangles is equal to half of that parallelogram "
    Applying it , we get that the area of the triangle ADC + area of the triangle FDE = half the are of the square ACEF
    After finding that x = 13 then applying the Pythagorean theorem, we get the area of the square is 845 , half of it is 422,5
    The area of the triangle ADC = 169 , by symmetry.
    So the area of the triangle FDE = 422,5 - 169 = 253.5
    Thanks for reading, have a nice time

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

    • @phungpham1725
      @phungpham1725 4 หลายเดือนก่อน

      Thank you for sharing!

  • @abstragic4216
    @abstragic4216 4 หลายเดือนก่อน +4

    Another very attractive problem thank you. I used a similar method except never calculated AC, just its square (845) which equates to the area of ACEF. I then concluded that the sum of areas of triangles ACD and DEF is half of the area of square ACEF (for any position of point D inside square ACEF). So the solution is (845/2)-169.

    • @bkp_s
      @bkp_s 4 หลายเดือนก่อน +1

      Very accurately my way of solving is similar to you.Area of opposite portions in a square are equal(845/2)🙏

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Nice work!
      You are very welcome!
      Thanks for sharing ❤️

  • @giuseppemalaguti435
    @giuseppemalaguti435 4 หลายเดือนก่อน +4

    l=13√5...h=13√5-338/13√5=507/13√5=39/√5...Agreen=lh/2=13√5*39/√5/2=507/2

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @jamestalbott4499
    @jamestalbott4499 4 หลายเดือนก่อน +1

    Thank you!

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      You are very welcome!
      Thanks for the feedback ❤️

  • @Birol731
    @Birol731 4 หลายเดือนก่อน +2

    My way of solution ▶
    Let's calculate the area of the triangle:
    A(ΔABC)= 169 cm²
    169= [AB]*[BC]/2
    [AB]= 2x
    [BC]= x

    169= 2x²/2
    169= x²
    x= √169
    x= 13 cm
    [AC]²= [CD]²+[DA]²
    [AC]²= 4x²+x²
    [AC]= √5 x
    [AC]= 13√5 cm
    II) for the right triangle Δ(ACD):
    G ∈ [AC]
    [DG] ⊥ [AG]
    [DA]²= [AG]*[AC]
    [DA]=x
    [AG]= y
    [AC]= 13√5

    x²= y*13√5
    the same equations for the [CD]:
    4x²= (13√5-y)*13√5
    if we divide these two equations into each other we get:
    4x²= (13√5-y)*13√5
    x²= y*13√5

    y= 13√5/5 cm
    According to the Pythagorean theorem
    x²= y²+h²
    13²= (13√5/5)²+h²
    h²= 169 - 169/5
    h= 26√5/5

    h₂= a-h
    h₂= 13√5 - 26√5/5
    h₂= 39√5/5
    A(ΔDEF)= a*h₂/2
    A(ΔDEF)= 13√5*39√5/5/2
    A(ΔDEF)= 2535/10
    A(ΔDEF)= 253,5 cm²

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @MrPaulc222
    @MrPaulc222 4 หลายเดือนก่อน +2

    The first bit looks straightforward, but trickier thereafter.
    2x^2 = 338 --> x^2 = 169 --> x = 13.
    676 + 169 = 845, so AC = sqrt(845).
    ACEF area = 845.
    Make point G on the line AC, such that DGA is 90deg.
    DGA is similar to ABC.
    13, 26, sqrt845) is similar to a, 2a, 13.
    Find DG. Call it x.:
    13/(DG) = (sqrt(845))/26
    338 = x*sqrt(845)
    338/(sqrt(845)) = x
    (338/sqrt(845)) * (sqrt(845)/sqrt(845)
    (338*sqrt(845))/845 = x
    I prefer leaving decimal to the very end but...
    x = 11.62755348299891 (rounded).
    sqrt(845) - 11.62755348299891 = 17.44133022449836
    sqrt(845) * 17.44133022449836 = 2* area of green triangle = 507 un^2. This was the exact answer displayed in the calculator - surprisingly, an integer.
    Green area: 507/2 = 253.5 un^2.
    Different method, but at least I got the right answer. If you think I made that difficult for myself, you should have seen my first attempt LOL.

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @unknownidentity2846
    @unknownidentity2846 4 หลายเดือนก่อน +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    Since the triangle ABC is a right triangle, we can calculate the value of x as follows:
    A(ABC) = (1/2)*AB*BC
    169cm² = (1/2)*(2*x)*x
    169cm² = x²
    ⇒ x = √(169cm²) = 13cm
    Now we are able to calculate the side length s of the square ACEF by applying the Pythagorean theorem:
    s² = AC² = AB² + BC² = (2*x)² + x² = 4*x² + x² = 5*x²
    ⇒ s = √5*x = (13√5)cm
    A line through point D, which is parallel to AF and CE, may intersect AC at point G and EF at point H. Obviously we have DG+DH=GH=AF=s. The triangle ACD is obviously congruent to the triangle ABC and has therefore the same area. Since DG is the height of this triangle according to its base AC, we can conclude:
    A(ACD) = A(ABC) = (1/2)*AC*h(AC) = (1/2)*s*DG
    Now we are able to calculate the area of the green triangle:
    A(DEF)
    = (1/2)*EF*h(EF)
    = (1/2)*EF*DH
    = (1/2)*EF*(GH − DG)
    = (1/2)*s*(s − DG)
    = (1/2)*s² − (1/2)*s*DG
    = (1/2)*s² − A(ABC)
    = (1/2)*[(13√5)cm]² − 169cm²
    = (5/2)*(169cm)² − 169cm²
    = (3/2)*(169cm)²
    = 253.5cm²
    Best regards from Germany

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @phungpham1725
    @phungpham1725 4 หลายเดือนก่อน +2

    1/ Note that the sums of the areas of the two opposite triangles in the square are equal (=half of the area of the square.)
    -> sqx= 169
    sq AC= 5.(169)
    Area of the green triangle= 5/2. 169 -169 = 253.5 sq cm😊

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @alster724
    @alster724 4 หลายเดือนก่อน +1

    An alternate solution to the last part is by "reverse" cross-multiplication.
    Since we know a+b= 169
    (845/2)= 169+c+d
    845= 338+2(c+d)
    507= 2(c+d)
    507/2= c+d
    253.5 = c+d
    c+d= A∆(green)
    A∆(green)= 253.5 cm²

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @michaeldoerr5810
    @michaeldoerr5810 4 หลายเดือนก่อน +1

    The area is 507/2. That is definitely some clever geometry right there!!!

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for the feedback ❤️

  • @sergeyvinns931
    @sergeyvinns931 4 หลายเดือนก่อน +1

    Aatec=845, Adec=338, Aadf=84,5, Aacd=169, Adec=845-338-169-84,5=253,5.

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @sorourhashemi3249
    @sorourhashemi3249 4 หลายเดือนก่อน +1

    Perfect. I love it challenging.
    My way :
    Area of triangle ADC=169
    Area of triangle AFD=RAD.845×RAD.845×h/2
    Area of triangle EDC= RAD.845×RAD.845-h/2
    So , areas of ADC+EDC+DAF- 845= 235.5 THE AREA OF GREEN TRIANGLE

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Nice work!
      Thanks for sharing ❤️

  • @AmirgabYT2185
    @AmirgabYT2185 4 หลายเดือนก่อน +3

    We now area of yellow triangle, so we can find x and then sides.
    2x•x/2=169
    x²=169
    x=13
    13•2=26
    So sides are 13 & 26, hypotenuse will be:
    √(13²+26²)=√845=13√5
    Let's drop a height from opposite vertex of a rectangle to the hypotenuse and to the upper side of a square (that is also side of green triangle).
    Then we got segment made of two heights that is parallel and equal to the side of a square.
    Let height to the hypotenuse be h(1), and height of triangle h(2).
    We can find h(1) by formula:
    h(1)=13•26/13√5=26/√5=26√5/5
    As the whole segment is equal to the side of square and is 13√5 (hypotenuse is also a side of square), h(2) will be:
    h(2)=13√5-26√5/5=(65√5-26√5)/5=39√5/5
    Finally, we can find area of a triangle:
    S∆=13√5•(39√5/5)/2=507/2=253,5
    Answer: 253,5 cm².
    Pin pls 🙏

    • @溫文爾雅-q3f
      @溫文爾雅-q3f 4 หลายเดือนก่อน +1

      Pin pin 💪

    • @PreMath
      @PreMath  4 หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️

  • @marioalb9726
    @marioalb9726 4 หลายเดือนก่อน +3

    Area of yellow triangle:
    A=½b.h= ½2x² = 169 cm²
    x = 13 cm
    Side of square:
    s²= b²+h² = (2x)²+x²= 5x²
    s = 29,0689 cm
    Height of yellow triangle:
    A = ½b.h = ½s.h
    h = 2A/s = 11,62755 cm
    Area of green triangle:
    A₁ = ½b.h₁= ½s.(s-h)
    A₁ = 253,5 cm² ( Solved √ )

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @adept7474
    @adept7474 4 หลายเดือนก่อน +1

    АС = х√5. Height in ▲ADC = h = 2х/√5. Height in ▲FDE = H = х√5 - 2х/√5 = 3x/√5.
    S(FDE)/S(ADC) = H/h = (3x/√5)/(2х/√5) = 3/2. S(FDE) = 169 × 1,5 = 253,5.

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @himo3485
    @himo3485 4 หลายเดือนก่อน +1

    2x*x/2=169 x^2=169 x=13
    AC=√[13^2+26^2]=√845
    ADC=169cm^2
    square ACEF=√845*√845=845cm^2
    area of Green shaded region :
    845/2 - 169 = 422.5 - 169 = 253.5cm^2

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @prossvay8744
    @prossvay8744 4 หลายเดือนก่อน +2

    Area of right triangle=169cm^2
    So 1/2(x)(2x)=169
    So x=13 cm
    ACEF is a square
    AC=√13^2+26^2=13√5cm
    AC=CE=EF=FA=13√5 cm
    Connect G to H (G on DE and H on AC)
    In right triangle ACD
    1/2(DH)(AC)=169
    1/2(DH)(13√5)=169
    So DH=26√5/5cm
    So DG=13√5-26√5/5=39√5/5cm
    Green shaded area=1/2(13√5)(39√5/5)=507/2 cm^2=253.5 cm^2.❤❤❤

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @cyruschang1904
    @cyruschang1904 4 หลายเดือนก่อน

    x(2x)/2 = 169
    x = 13
    diagonal of the square = side of the square = ✓(13^2 + 26^2) = 13✓(1 + 4) = 13✓5
    the height of the left triangle = 13(13/13✓5) = 13/✓5
    the height of the right triangle = 26(26/13✓5) = 52/✓5
    green area = (13✓5)^2 - (13✓5)(13/✓5)/2 - (13✓5)(52/✓5)/2 - 169/2 = 5(13^2) - (13^2)/2 - 13(52)/2 - 169/2 = 5(13^2) - (13^2)/2 - 2(13^2) - (13^2)/2 = 2(13^2) = 338 cm^2

  • @Waldlaeufer70
    @Waldlaeufer70 4 หลายเดือนก่อน

    A(yellow) = 1/2 * 2x * x = x² = 169 cm²
    A(square) = d² = 4x² + x² = 5x² = 5 * 169 cm² = 845 cm²
    1/2 * A(square) = 422.5 cm² = 169 cm² + A(green)
    A(green) = 422.5 cm² - 169 cm² = 253.5 cm²

  • @marcgriselhubert3915
    @marcgriselhubert3915 4 หลายเดือนก่อน +1

    Yellow area = (1/2).x.(2.x) = x^2 = 169, so x = 13. Now AC^2 = x^2 + (2.x)^2 = 5.(x^2) = 5.169, so AC = 13.sqrt(5), it is the side length of the square ACEF.
    We us an orthonormal center A and first axis (AB). We have C(26; 13), VectorAC(26; 13), VectorCE(-13; 26), so E(13; 39), VectorEF(-26; -13), so F(-13; 26).
    Equation of (EF): (x +13).(1) - (y -26).(2) = 0 or x -2.y +65 = 0, Then distance from D to (EF) = abs(0 -2.13 + 65)/sqrt((1)^2 + (-2)^2) = 39/sqrt(5)
    The area of the green triangle is then: (1/2).EF.distance from D to (EF) = (1/2).(13.sqrt(5)).(39/sqrt(5)) = (13.39)/2 = 507/2.

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @alexniklas8777
    @alexniklas8777 4 หลายเดือนก่อน

    253,5 cm^2
    Thanks sir😊

  • @nandisaand5287
    @nandisaand5287 4 หลายเดือนก่อน

    Solving in terms of X, and using cartesian system [D(0,0)], I found Green Triangle is an isosceles triangle.
    EF=ED=Sqrt(5)•X
    FD=Sqrt(2)•X
    Height: Sqrt(4.5)•X
    Area=½Sqrt(2)•Sqrt(4.5)•X²

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Thanks for sharing ❤️

  • @quigonkenny
    @quigonkenny 4 หลายเดือนก่อน +1

    Let the side length of square ACEF be s.
    Triangle ∆ABC:
    [ABC] = bh/2 = AB(BC)/2
    169 = 2x(x)/2
    x² = 169
    x = √169 = 13
    AB² + BC² = CA²
    (2x)² + x² = s²
    s² = 4x² + x² = 5x²
    s = √(5x²) = √5x = 13√5
    Draw MN, where M is the point on EF and N is the point on AC where MN is perpendicular to AC amd EF, parallel to FA and CE, and passes through D. As MN is perpendicular to AC amd EF, MN = CE = FA = s. Let MD be h, so DN = s-h = 13√5-h.
    As AC is the diagonal of rectangle ABCD, triangles ∆ABC and ∆CDA are congruent.
    Triangle ∆CDA:
    [CDA] = bh/2 = AC(MD)/2
    169 = 13√5(13√5-h)/2
    338 = 845 - 13√5h
    13√5h = 845 - 338 = 507
    h = 507/13√5 = 39/√5
    Triangle ∆EFD:
    [EFD] = bh/2 = EF(MD)/2
    [EFD] = 13√5(39/√5)/2 = 507/2 = 253.5 cm²

    • @PreMath
      @PreMath  4 หลายเดือนก่อน

      Excellent!
      Thanks for sharing ❤️

  • @wackojacko3962
    @wackojacko3962 4 หลายเดือนก่อน +1

    Even though on Friday the 13th I walked under a ladder ...didn't knock on wood...broke a mirror, ...the curse wasn't enough too drain the energy of my passion and success from doing math. 🙂

    • @phungpham1725
      @phungpham1725 4 หลายเดือนก่อน +1

      😅

    • @PreMath
      @PreMath  4 หลายเดือนก่อน +1

      😀😀
      Thanks for sharing ❤️

  • @LuisdeBritoCamacho
    @LuisdeBritoCamacho 4 หลายเดือนก่อน +1

    STEP-BY-STEP RESOLUTION PROPOSAL :
    01) 169 * 2 = 2X * X ; 338 = 2X^2 ; X^2 = 338 / 2 ; X^2 = 169 ; X = sqrt(169) ; X = 13
    02) AC^2 = X^2 + 4X^2 ; AC^2 = 5X^2 ; AC^2 = 5 * 169 ; AC^2 = 845 ; AC = sqrt(845) ; AC = 13sqrt(5) ; AC ~ 29,07
    03) Big Square Side = 13sqrt(5) lin un
    04) Big Square Area = 845 sq un
    05) Green Shaded Region Area = (Big Square Area - Rectangle Area) / 2
    06) GSRA = (845 - 338) / 2
    07) GSRA = 507 / 2 sq un
    08) GSRA ~ 253,5 sq un
    Therefore,
    OUR BEST ANSWER :
    The Green Shaded Region Area must be equal to 507/2 Square Units

    • @PreMath
      @PreMath  4 หลายเดือนก่อน +1

      Excellent!
      Thanks for sharing ❤️