Can you find area of the Purple shaded region? | (Rectangle) |

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ธ.ค. 2024

ความคิดเห็น •

  • @dariosilva85
    @dariosilva85 22 ชั่วโมงที่ผ่านมา +9

    I got the purple area to be (b^3/2a). Which together with your answer implies that b = a*sqrt(3). Which implies that the triangles must be 30-60-90 triangles for this set-up to be possible.

    • @quigonkenny
      @quigonkenny 19 ชั่วโมงที่ผ่านมา +2

      Yep, you can see that G is the midpoint of AC, since FGCB is made up of two congruent triangles, each of area ab/2, meaning GC must be length b and AC is 2b. ∆ADC is thus a 30-60-90. By extension, all the other triangles in the diagram are 30-60-90 as well.

  • @Ibrahimfamilyvlog2097l
    @Ibrahimfamilyvlog2097l 8 ชั่วโมงที่ผ่านมา

    Thanks for sharing Sir ❤❤❤

  • @uwelinzbauer3973
    @uwelinzbauer3973 22 ชั่วโมงที่ผ่านมา +2

    I recognized, that AF=FC, and that AC=2b.
    Hence AC/BC=2b/b=2.
    So we have the triangles to be special case 30,60,90 triangles.
    Asked area = 1.5*a*b.
    Thanks for sharing this interesting geometric puzzle 👍

  • @davidteo7421
    @davidteo7421 วันที่ผ่านมา +2

    Final: S=3ab/2 and b^2=3a^2

  • @BorisTruh
    @BorisTruh 23 ชั่วโมงที่ผ่านมา +1

    AF^2=a^2+b^2, S(ACD)=0,5*b*{sqr(a^2+b^2)+a}

  • @jamestalbott4499
    @jamestalbott4499 19 ชั่วโมงที่ผ่านมา

    Thank you!

  • @KenW-kb4uk
    @KenW-kb4uk 16 ชั่วโมงที่ผ่านมา +1

    There is some inconsistency evident here.

    • @geraldgiannotti8364
      @geraldgiannotti8364 14 ชั่วโมงที่ผ่านมา +1

      Yes. The PreMath answer of 3ab/2 ONLY applies if the triangles are 30-60-90 right triangles. The area formula of A =(0.5)b(a + sqrt(a^2+b^2)) works for all values of a and b.

  • @nenetstree914
    @nenetstree914 21 ชั่วโมงที่ผ่านมา +4

    b*[(a^2+b^2)]^(0.5)-(ab/2) ???

    • @thewolfdoctor761
      @thewolfdoctor761 21 ชั่วโมงที่ผ่านมา +3

      That's what I got, so does this equal 3ab/2 ?

    • @AdemolaAderibigbe-j8s
      @AdemolaAderibigbe-j8s 19 ชั่วโมงที่ผ่านมา +1

      @@thewolfdoctor761 Yes it does. The area of triangle ADC is (0.5)b(a + sqrt(a^2+b^2)) and that is the same area as the stated expression i.e., b*[(a^2+b^2)]^(0.5)-(ab/2). If you equate these two expressions, you end up with b*sqrt(a^2 + b^2) = 2ab. If you substitute that in the stated expression, you get the area of the purple shaded area as 3ab/2.

    • @geraldgiannotti8364
      @geraldgiannotti8364 15 ชั่วโมงที่ผ่านมา

      The above answer is correct, and is the General solution for any value of a or b. The PreMath answer of 3ab/2 ONLY applies if the triangles are special 30-60-90 right triangles.

    • @AdemolaAderibigbe-j8s
      @AdemolaAderibigbe-j8s 14 ชั่วโมงที่ผ่านมา

      @@geraldgiannotti8364 Can you come up with any set-up that has "a" and "b" values for which all the requirements of the problem are met and for which b*[(a^2+b^2)]^(0.5)-(ab/2) is a solution and 3ab/2 is not a solution?

    • @geraldgiannotti8364
      @geraldgiannotti8364 14 ชั่วโมงที่ผ่านมา +1

      @@AdemolaAderibigbe-j8s Yes. The area formula of A =(0.5)b(a + sqrt(a^2+b^2)) works for all values of a and b. The solution of 3ab/2 is only obtained when b=sqrt(3)*a. This constraint of b/a = sqrt(3) makes all the triangles 30-60-90 right triangles

  • @santiagoarosam430
    @santiagoarosam430 วันที่ผ่านมา +1

    FC=FA---> ABC=3ab/2---> ABCD=3ab---> AFED=2ab---> AGFED=2ab-(ab/2) =3ab/2.
    Gracias y saludos.

    • @AmirgabYT2185
      @AmirgabYT2185 23 ชั่วโมงที่ผ่านมา +1

      Why ABC=3ab/2

    • @santiagoarosam430
      @santiagoarosam430 23 ชั่วโมงที่ผ่านมา +2

      ABC=FGA+FGC+FBC=3ab/2.
      Un saludo

  • @imetroangola17
    @imetroangola17 20 ชั่วโมงที่ผ่านมา +1

    *Solução:*
    Por Pitágoras no ∆AQF:
    AF² = a² + b² → AF = (a² + b²)½
    A área [AFED] = BC × AF
    *[AFED] = b(a² + b²)½*
    A área do triângulo [AFG] = ab/2
    A área purple shaded é:
    [AFED] - [AFG] =
    = *_b[(a² + b²)½ - a/2]_*

    • @imetroangola17
      @imetroangola17 20 ชั่วโมงที่ผ่านมา +1

      Caso queira brincar mais nas equações, o professor provou que a área sombreada roxa é 3ab/2. Daí,
      b [(a² + b²)½ - a/2] = 3ab/2
      (a² + b²)½ - a/2 = 3a/2
      (a² + b²)½ = 3a/2 + a/2 = 2a
      a² + b² = 4a² → 3a² = b² → b=a√3. Portanto, a área sombreada roxa pode ser dada por :
      3ab/2 = *3√3a²/2.*

  • @cyruschang1904
    @cyruschang1904 6 ชั่วโมงที่ผ่านมา

    Purple area = rectangle ADEF - half of the green rectangle = half of the rectangle ABCD
    b√(a^2 + b^2) - ab/2 = b(a + √(a^2 + b^2))/2
    Let √(a^2 + b^2) = L
    bL - ab/2 = b(a + L)/2
    ab = bL/2
    L = 2a
    Purple area = b(2a) - ab/2 = 3ab/2

  • @Geometricat38
    @Geometricat38 23 ชั่วโมงที่ผ่านมา +1

    You can also express the answer in terms of a or b alone, since b = a.sqrt(3):
    Area = (3a^2.sqrt(3))/2. If you want to be even more picky, you could write: (3^(3/2).a^2)/2.
    Area = (b^2.sqrt(3))/2
    The answer can also be expressed as follows:
    Area = b^3/ (2a)
    Substituting b^2 = 3a^2, one arrives at Premath's answer.
    Cheers!

    • @scottdort7197
      @scottdort7197 9 ชั่วโมงที่ผ่านมา

      That's what I got. Pre-math's conclusion was in complete in my opinion. b = a * sqrt3. Therefore the area is A = a^2*3/2*sqrt3.

  • @arizonarunner1953
    @arizonarunner1953 13 ชั่วโมงที่ผ่านมา

    I believe the triangles are 30°, 60°, 90°. Therefor, the solution can be Area = (√(3)/2)*b².

  • @harikatragadda
    @harikatragadda 23 ชั่วโมงที่ผ่านมา

    ∆AQF is Similar to ∆ADC. Hence [∆ADC]=(b/a)² *[∆AQF]=b³/2a

  • @daviddowdell5025
    @daviddowdell5025 2 ชั่วโมงที่ผ่านมา

    This is a very good problem to test your ability to stick only to the information provided. Triangle AFQ is not necessarily a 30-60-90 triangle and could be anything. Quadrilateral AGFQ is not a rectangle in general. Any solutions that assume that AGFQ is a rectangle will just be valid for the special case of AFQ being a 30-60-90 triangle, but not correct in general. I get the purple area to be in general 0.75*b*sqrt(a^2+b^2) and not an invariant.

  • @alexundre8745
    @alexundre8745 22 ชั่วโมงที่ผ่านมา

    Bom dia Mestre
    Forte Abraço aqui do Rio de Janeiro

  • @zawatsky
    @zawatsky 20 ชั่วโมงที่ผ่านมา

    ▲EPC переносим в равный ему ▲GFP. Видим, что получилась фигура, составленная из прямоугольника и дельтоида с равной площадью (составленные фактически каждый из пары треугольников-половинок), а лиловая площадь S(ACD)=S(АВСВ)/2, обозначим просто как S. Общая площадь 2ab. Видим, что 3 из 4 этих треугольников занимают вторую половину площади большого, равную искомой, т. е. S=¾*2ab=3ab/2.

  • @quigonkenny
    @quigonkenny 19 ชั่วโมงที่ผ่านมา

    Draw FC. As FG = BF = a, ∠CBF = ∠FGC = 90°, and FC is common, then ∆FGC and ∆CBF are congruent triangles.
    As GC = CB = b and AG = FQ = b, then AC = 2b. As ∠BAC = ∠GAF and ∠AGF = ∠CBA = 90°, then ∆AGF and ∆CBA are similar triangles.
    FA/GF = AC/CB
    FA/a = 2b/b = 2
    FA = 2a
    The purple shaded area is equal to the area of the rectangle ADEF minus the area of triangle ∆AGF.
    Purple shaded area:
    A = lw - bh/2
    A = FA(AD) - AG(GF)/2
    A = 2a(b) - b(a)/2
    A = 2ab - ab/2
    [ A = 3ab/2 sq units ]

  • @daniellerosalie2155
    @daniellerosalie2155 11 ชั่วโมงที่ผ่านมา

    30, 60, 90 triangles is the (square root of 3/2)*b^2

  • @MegaSuperEnrique
    @MegaSuperEnrique วันที่ผ่านมา

    That was AAS congruency, not ASA, not that it matters too much

  • @DanyVanImpe
    @DanyVanImpe 20 ชั่วโมงที่ผ่านมา

    That is only true if the triangle AQF is a triangle with angles 30°- 60°- 90°

  • @adamoksiuta4715
    @adamoksiuta4715 20 ชั่วโมงที่ผ่านมา

    When you knew that purple area is 1/2 of area of rectangle ABCD, you can calculate the area of the rectangle ABCD. How? AB is equal AF + FB. Lenght of FB is equal a, and lenght of AF you can calculate from right triangle AQF. When you use of Pythagorean theroem lenght of AF is equal sqrt of (a^2 + b^2). So lenght of AB is equal [sqrt (a^2 + b^2) + a]. When you multiply it by 1/2 of b you will have an area of purple figure.

  • @wastedontheyoung5585
    @wastedontheyoung5585 15 ชั่วโมงที่ผ่านมา

    since area triangle PEC = area triangle PGF then answer is area triangle ADC
    its area is half height times base.
    since AD = BC then height is b
    since DC = AB then base is AF + FB
    FB is a and we can calculate AF using Pythagorean Theorem or (a^2+b^2)^(1/2)
    although my answer is more complicated it was derived faster and has fewer steps
    does it simplify to your answer?

  • @marcgriselhubert3915
    @marcgriselhubert3915 วันที่ผ่านมา

    AB = AF + FB = sqrt(a^2 + b^2) + a, so the big rectangle area is (sqrt(a^2 + b^2) + a).b and the purple shaded area is ((sqrt(a^2 + b^2) + a).b - (3/2).a.b
    This result is less "nice" than the result you found but it is immediate to obtain.
    Now let's see why these results are really the same: (sqrt(a^2 + b^2) + a).b -(3/2).a.b = (3/2).a.b is equivalent to sqrt(a^2 + b^2) + a = 3.a
    or sqrt(a^2 + b^2) = 2.a or a^2 + b^2 = 4.a^2 or b^2 = 3.a^2 or b = sqrt(3).a This is the condition other persons already found. The initial drawing must
    verify b = sqrt(3).a to be constructed. For example t = angleFCB must be equal to 30° (tan(t) = a/b = sqrt(3)/3).

  • @awandrew11
    @awandrew11 22 ชั่วโมงที่ผ่านมา

    area AQFG- 1/2 ab is the answer, AQFG area =( root of a square + b square( Pythagorus))Xb, answer is b( root {a square+ b square}-1/2 a}?

  • @MegaSuperEnrique
    @MegaSuperEnrique วันที่ผ่านมา

    So we could continue the math: if purple area = 3ab/2, then dimensions of rectangle are b and 3a, so AF=2a. Then with the triangle, sides of a and b, hypotenuse of 2a, only works if b=a√3, which means it must be a 30-60-90 triangle.

    • @marcgriselhubert3915
      @marcgriselhubert3915 วันที่ผ่านมา

      You are right, there are lots of 30° and 60° angles in the given drawing.

  • @phungpham1725
    @phungpham1725 21 ชั่วโมงที่ผ่านมา

    1/ The two triangles FGP and CEP are congruent--> Area of the purple region= 1/2 area of the big rectangle.
    2/ Note that AF= FC-> the triangle AFC is an isosceles one, which means that the three triangles AFG=CFG=CFB
    -> Area of the purple region= 3 ab/2😅😅😅

  • @unknownidentity2846
    @unknownidentity2846 23 ชั่วโมงที่ผ่านมา +2

    Let's find the area:
    .
    ..
    ...
    ....
    .....
    First of all we observe that the triangles AFG and CEP are similar (∠AGF=∠CEP=90° ∧ ∠ECP=∠FAG). So we can conclude:
    EP/CE = FG/AG
    EP/a = a/b
    ⇒ EP = a²/b
    The triangles CEP and FGP are congruent (CE=FG=a ∧ ∠CEP=∠FGP=90° ∧ ∠CPE=∠FPG). Therefore we know that CP=FP. Now we apply the Pythagorean theorem to the right triangle CEP:
    CP² = CE² + EP²
    FP² = CE² + EP²
    (EF − EP)² = CE² + EP²
    EF² − 2*EF*EP + EP² = CE² + EP²
    EF² − 2*EF*EP = CE²
    b² − 2*b*(a²/b) = a²
    b² − 2a² = a²
    b² = 3a²
    ⇒ b = √3a
    Now we are able to calculate the area of the purple region:
    AF² = AQ² + FQ² = a² + b² = a² + 3a² = 4a² ⇒ AF = 2a
    A(purple) = A(ADEF) − A(AFG) = AF*AD − (1/2)*AG*FG = (2a)*b − (1/2)*b*a = 2ab − ab/2 = 3ab/2 = (3√3/2)a²
    Best regards from Germany

  • @sergioaiex3966
    @sergioaiex3966 18 ชั่วโมงที่ผ่านมา

    Solution:
    Triangle FGP is congruent to Triangle CEP
    Therefore:
    GP = EP
    FG = CE
    FP = CP
    Like that, we conclude that Purple Area is half of Rectangle ABCD Area
    Purple Area = ½ Rectangle ABCD Area ... ¹
    The Triangles AGF and CEP are similar, so we are going to use proportions
    EP/CE = FG/AG
    EP/a = a/b
    EP = a²/b
    Now, applying the Pythagorean Theorem in Triangle CEP
    CE² + EP² = CP²
    But CP = FP and FP = EF - EP
    CE² + EP² = FP²
    CE² + EP² = (EF - EP)²
    CE² + EP² = EF² - 2 EF . EP + EP²
    CE² = EF² - 2 EF . EP
    a² = b² - 2 . b . a²/b
    a² = b² - 2a²
    3a² = b²
    b² = 3a²
    b = a√3
    AG² + FG² = AF²
    b² + a² = AF²
    AF² = (a√3)² + a²
    AF² = 3a² + a²
    AF² = 4a²
    AF = 2a
    AB = AF + BF
    AB = 2a + a
    AB = 3a
    Substituting in ¹
    Purple Area = ½ length × width
    Purple Area = ½ AB × BC
    Purple Area = ½ 3a × b
    Purple Area = 3ab/2 Square Units ✅