Changing Order of a Double Summation

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 ธ.ค. 2024

ความคิดเห็น • 163

  • @blackpenredpen
    @blackpenredpen  5 ปีที่แล้ว +22

    Longer version: th-cam.com/video/u1BtAhtCRcw/w-d-xo.html

    • @rodrigolopez3874
      @rodrigolopez3874 5 ปีที่แล้ว +1

      Because of this video i found an interesting formula, could you take a look?
      Summation from n=1 to infinity of ( n / a^n ) equals to a / (a-1)^2
      For any a s.t. |a|>1

    • @supremeassassin3478
      @supremeassassin3478 5 ปีที่แล้ว +2

      Hi blackpenredpen I have a doubt...
      i^4 = 1 right
      => Now we raise both sides to 1/4 th power
      => (i^4)^1/4 = (1)^1/4
      => i^1 = 4th root of 1
      => i^1 = 1
      => i = 1
      => sqrt (-1) = i = 1
      How is this possible?

    • @rodrigolopez3874
      @rodrigolopez3874 5 ปีที่แล้ว +3

      @@supremeassassin3478 When u do the 4th root of 1 you get 4 results {1, -1, i, -i}, you are equaling 2 diferentes roots

    • @supremeassassin3478
      @supremeassassin3478 5 ปีที่แล้ว

      @@rodrigolopez3874 oh... Thx so much
      Ur a God for me
      My brain has been exploding because of this question for weeks
      Thx

    • @oximas
      @oximas 5 ปีที่แล้ว

      @@rodrigolopez3874 i found this formula watching another summition video about 0.01+0.002+0.0003.....
      its nice to see that his vids make us create some cool formulas

  • @brandondrumheller1756
    @brandondrumheller1756 5 ปีที่แล้ว +186

    "This is not an integral sign so don't get too excited." 😄

    • @HighLordSythen
      @HighLordSythen 5 ปีที่แล้ว +1

      I literally laughed out loud after he said that. :P

    • @JackSuperFly
      @JackSuperFly 5 ปีที่แล้ว

      Right! But integrals function the same way because it has summation in it too.

    • @mohamedaminetahiri
      @mohamedaminetahiri 5 ปีที่แล้ว

      😂😂

    • @pedrosso0
      @pedrosso0 3 ปีที่แล้ว

      I WAS SO EXCITED. XD /j

  • @blackpenredpen
    @blackpenredpen  5 ปีที่แล้ว +26

    [from my latest post] Hi all,
    The doctor is confident to say that Lars is a stage 3 cancer survivor!!! This is such a great news and we are beyond happy!!! Here's the video message from Lars to everyone: th-cam.com/video/LB1xWStHFPc/w-d-xo.html
    My video message to him: th-cam.com/video/LX-BE_o5y_U/w-d-xo.html
    Lars, Peyam and I are planning an livestream interview. So please leave a question that you'd like to know about Lars. Also if you have a good way to do a livestream interview, please let me know as well. Thank you!
    Backstory
    Lars is a long-term viewer of mine and@Dr Peyamfrom Belgium. About 4 months ago, he left a comment on my video saying that he was battling with cancer and was also watching my videos in the hospital. I felt very touched since I never thought that my videos could provide spiritual support to help him feel better.
    I had an idea of making a video dedicated to him to support him to my fullest. He told me that he really liked my "easiest integral on youtube" video but couldn't solve the integral of (tan(x))^(2/3). I tried it and got a solution. However during that time, I was preparing my calc 2 students and many other viewers to get better with integrals. I had done a video on the techniques/strategies th-cam.com/video/M5MaGUO0JDs/w-d-xo.html but many of you guys wanted more. Then while I was preparing for another similar video, a thought came to my mind: "** it, why don't I just solve 100 of them!".
    I postponed the "Lar's Integral" but my 100 integrals video was born. I really want to thank everyone who had left a supporting comment that help to put a smile on Lar's face during the tough time.
    *LARS IS A STAGE 3 CANCER SURVIVOR NOW AND I AM BEYOND HAPPY*
    Thank you all, and I wish everyone have a great great life!
    100/(1-x)

  • @AndrewShepherd-n5m
    @AndrewShepherd-n5m ปีที่แล้ว +3

    This concept has been crushing me. Great vid. Seeing the inequalities made it clear.

  • @drpeyam
    @drpeyam 5 ปีที่แล้ว +42

    Fubiiini!!! 😄

  • @vellyxenya3970
    @vellyxenya3970 5 ปีที่แล้ว +6

    Thank you very much blackpenredpen, you are the first one giving me a true intuition on why the inversion of order of summation is done like that. It's been bugging for a while and I feel freed now! Thank you for this awesome video and all of your other content!

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +1

      I am very glad to help!!! This is actually really cool bc it's similar to change the order of a double integral. You can check out this longer version: th-cam.com/video/u1BtAhtCRcw/w-d-xo.html

    • @vellyxenya3970
      @vellyxenya3970 5 ปีที่แล้ว

      @@blackpenredpen Multivariables Calc exam coming soon and here I am doing my revisions with help of your videos^^, I'm gonna check it out, thank you!

  • @postbodzapism
    @postbodzapism 5 ปีที่แล้ว +38

    Or you can draw a table
    m 1 2 3 4 ...
    n
    1 x
    2 x x
    3 x x x
    4 x x x x
    .
    .
    .
    changing horizontal summation to vertical summation will get you the upper and lower limits of summation.

    • @IronLotus15
      @IronLotus15 5 ปีที่แล้ว

      I like that visualization

    • @mastrammeena328
      @mastrammeena328 4 ปีที่แล้ว +3

      I didn't understand that
      Please explain that to mw

  • @nicolasgoubin
    @nicolasgoubin 5 ปีที่แล้ว +26

    "Let me tell you that the answer for this iiiiis" :
    :)

  • @davidwright8432
    @davidwright8432 5 ปีที่แล้ว +2

    I knew it wasn't an integral sign but I still got excited, because I've been banging my head against this for too long! I tried this among other ways, which (I now know) were wrong.
    Now I know which is right, and why - hence the excitement! Excellent!

  • @whyit487
    @whyit487 5 ปีที่แล้ว +25

    Great video! I almost thought that there _was_ an integral at 5:58 and I got suprised... Congratulations on 300,000 subscribers! I'm glad to be one of them.That was a very interesting concept, and I can't wait for the next video!

  • @MrHK1636
    @MrHK1636 5 ปีที่แล้ว +10

    It might be easier to do this way: First take 1/2^m out side and inside is geometric summation so (1/2*(1-(1/2)^m))/(1-1/2)=(1-(1/2)^m) then you are left with two geometric series and you get 1-sum(1/4^m) and you get 1-1/3=2/3 so YAY

  • @amirrezajamshidi1948
    @amirrezajamshidi1948 10 หลายเดือนก่อน

    Finally an easier explanation.Thank you

  • @Chepem0nsTr0
    @Chepem0nsTr0 5 ปีที่แล้ว +4

    Without changing the order of the double summation, first take the 1/2^m out of the inner summation since the index variable that changes is n, then use the fact that the inner summation is a finite geometric series with common ratio r = 1/2 to express it in terms of m (there's a formula for this), and finally evaluate the infinite geometric series.

  • @MathForLife
    @MathForLife 5 ปีที่แล้ว +3

    Congrats with 300k!! I love double summation! Nice video!:)

  • @legendarycosmo7816
    @legendarycosmo7816 5 ปีที่แล้ว +20

    Hey blackpenredpen ,could you do a video on divergent series?
    I really seem to be having a trouble in grasping the concept.

  • @BobChao87
    @BobChao87 2 ปีที่แล้ว

    I did this... really poorly, but was pleased when I also got the correct answer! I expanded out a handful of terms from the series and looked for a pattern. I found that each exponent of 2 was repeated floor(exponent/2) times. So 2^-2 and 2^-3 showed up once, 2^-4 and 2^-5 showed up twice, 2^-6 and 2^-7 showed up thrice, etc. This let me change from a double sum into a single sum: Sum of i=2 -> Infinity of 2^-i * floor(i/2), but that's not something I could work with nicely. So I expanded out sample terms from that and started simplifying, getting an easy 2^-1+2^-3+2^-5+2^-8, oh, so close. Expanding more terms got me the 2^-7 and a 2^-10 with a long tail of numbers ready to collapse it. Good enough for me to suspect my pattern was close, so I wrote down Sum of j=0 -> Infinity of 2^(2j+1) and then solved that infinite geometric series.

  • @konstantinoskompothekras881
    @konstantinoskompothekras881 3 ปีที่แล้ว

    Thank you friend!
    Helped me a lot with a formula with probability generating functions where I couldn't understand why indices change when you change the order of summation

  • @megatron6448
    @megatron6448 ปีที่แล้ว

    Great video. This explanation was the best !!!! 😃

  • @ssdd9911
    @ssdd9911 5 ปีที่แล้ว +3

    like switching order of double integral also can draw graph

  • @butter5014
    @butter5014 5 ปีที่แล้ว

    Spherical microphone is awesome

  • @plaustrarius
    @plaustrarius 5 ปีที่แล้ว +6

    Let's see the sum of cubes as an iterated sum!!

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +3

      Hahaha, did you just come from Dr. P?

    • @plaustrarius
      @plaustrarius 5 ปีที่แล้ว +3

      @@blackpenredpen I could not resist!!

    • @drpeyam
      @drpeyam 5 ปีที่แล้ว +4

      Hahahaha, I was like “Hey, this sounds familiar!” 😂

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +2

      @@drpeyam
      And here's the man!!!

  • @FaerieDragonZook
    @FaerieDragonZook 5 ปีที่แล้ว

    When you sum the n first, the sum over m becomes SUM 1->inf[(1/(2^m)) - (1/(2^(2*m)))] = SUM 1->inf[(1/(2^m)) - (1/(4^m))]. Both pieces converge, so you can sum them independently to be (1/(2-1)) - (1/(4-1)) = 1 - 1/3 = 2/3.

  • @Supernova799
    @Supernova799 5 ปีที่แล้ว

    Thanks for double summation

  • @VibingMath
    @VibingMath 5 ปีที่แล้ว +1

    Love the magic sound effect 😁
    Good video on double summation 👍

  • @fernandosantosviana7971
    @fernandosantosviana7971 3 ปีที่แล้ว +1

    wonderful explanation, congrs

  • @BloobleBonker
    @BloobleBonker 5 ปีที่แล้ว

    Another great BPRP video. Thanks

  • @burg3112
    @burg3112 5 ปีที่แล้ว

    Oh my good. You helped me a lot. I was totaly confused how I can exchange the order of a double summation. Zero information in the internet in my mother tongue: german.

  • @ferhatakbulut6572
    @ferhatakbulut6572 5 ปีที่แล้ว +8

    5:58 this is not an integral sign, so don't get too excited.
    *sad noises*

  • @leenamhmd3443
    @leenamhmd3443 5 ปีที่แล้ว

    Thanks

  • @Nils-d-Const
    @Nils-d-Const 6 หลายเดือนก่อน

    General Formula: ∑{α ≤ m ≤ ∞} ∑{β ≤ n ≤ m} c ᵐᐩⁿ = c ᵅᐩᵝ / (1 - c)² (1 + c)
    Iff for (α, β, c) = (1, 1, 1/2) then it turns out as special case the ▶-Formula: 2/3 ≈ 0.666 ...

  • @fadzer9979
    @fadzer9979 5 ปีที่แล้ว

    5:58 oh ding a ling I was really excited

  • @oximas
    @oximas 5 ปีที่แล้ว

    i did it without changing the order and i got 2/3 ,it fells great to get it right

  • @trifonmadas2215
    @trifonmadas2215 4 ปีที่แล้ว +1

    poor example in my opinion as this is symmetrical if you swap m and n... however enjoyable and well explained

  • @hjk0150
    @hjk0150 5 ปีที่แล้ว +1

    Can you please do a video on the Riemann rearrangement theorem? I would like to understand more about it. 😃

  • @eckhardtdom
    @eckhardtdom ปีที่แล้ว

    2:02, can someone please explain this step again? Why des m=n there?

  • @aashsyed1277
    @aashsyed1277 3 ปีที่แล้ว

    3:23 what if m was starting at 2? what would we do?

  • @jimcameron6803
    @jimcameron6803 5 ปีที่แล้ว

    I changed the order of summation and took out the factor of 1/2^n; then I used the identity Sum[1..inf](1/2^m) = 1 and Sum[n..inf](1/2^m) = Sum(1..inf)(1/2^m) - Sum[1..n-1](1/2^m) to get 1 - Sum[n=1..inf](Sum[m=1..n-1](1/2^(m+n)) = 1 - Sum[n=1..inf](Sum[m=1..n](1/2^(m+n)) - 1/2^(2n)). Then if S1 is the original sum, S1 = 1 - S1 + Sum[n=1..inf](1/2^(2n)). Let S2 = Sum[n=1..inf](1/2^(2n)), then 2S2 = 2Sum[n=1..inf](1/2^(2n)) = Sum[n=1..inf](1/2^(2n-1)). Then 3S2 = Sum[n=1..inf](1/2^(2n)+1/2^(2n-1)) = 1 so S2 = 1/3 and 2S1 = 1 + 1/3 and S1 = 2/3.

  • @mehdaouinabil977
    @mehdaouinabil977 5 ปีที่แล้ว +3

    hi thank's, you done a good job. can you make a video about hypergeometric functions ?

  • @GameHero531
    @GameHero531 5 ปีที่แล้ว

    Was very hyped for big integral. Time to invent new maths then

  • @jayapandey2541
    @jayapandey2541 5 ปีที่แล้ว

    When Guido and our best friend shake hands.

  • @richikhaldar4846
    @richikhaldar4846 5 ปีที่แล้ว +21

    But what about a triple summation?🤔

    • @angelmendez-rivera351
      @angelmendez-rivera351 5 ปีที่แล้ว +7

      Richik Haldar It generalizes fairly nicely, although it becomes easier to express the inequality as a system of inequalities instead.

  • @CDChester
    @CDChester 5 ปีที่แล้ว +1

    That's it!

  • @Maple9117
    @Maple9117 ปีที่แล้ว

    Excellent!

  • @einsteingonzalez4336
    @einsteingonzalez4336 5 ปีที่แล้ว

    0:00-0:04 Let me tell you guys that the answer to this right here is...
    You do it. : ).
    #bprpYAY
    Speaking of sums, remember the video where you used the Fourier Series and Parseval's Theorem to calculate sum(1/(n^4)) for n=1->infinity and got the sum of pi^4/90? what if f(x)=sqrt(x)? Can this prove that there is no closed form for Apery's constant?

  • @lebecccomputer287
    @lebecccomputer287 4 ปีที่แล้ว

    Nobody’s talking about that voice crack at 0:50 lol

  • @Fdan36
    @Fdan36 5 ปีที่แล้ว

    Doraemon intro music. Nice touch.

  • @santiagoalvarez622
    @santiagoalvarez622 2 ปีที่แล้ว

    You SHOULD EXPLAIN OTHER CASES, WHEN THE INDICES START FROM 0, 2, 3, ETC TO n-1, n-2, ETC.

  • @MajaxPlop
    @MajaxPlop 5 ปีที่แล้ว

    I did without changing values, just using Sum (k from 1 to n) (q^k) = (q-q^(k+1)) /(1-q)

  • @heisenberg5705
    @heisenberg5705 5 ปีที่แล้ว

    very awesome but can you solve poincare problem?

  • @Patapom3
    @Patapom3 5 ปีที่แล้ว

    Amazing!

  • @pedrin471
    @pedrin471 5 ปีที่แล้ว

    I love your videos!!!

  • @athanasiuscontramundum4127
    @athanasiuscontramundum4127 5 ปีที่แล้ว

    Really cool and interesting video. Series are my favorite math concepts!

  • @kutuboxbayzan5967
    @kutuboxbayzan5967 5 ปีที่แล้ว

    Find to formula y=r Cartesian and polar coordinats

  • @zitianwang1205
    @zitianwang1205 3 ปีที่แล้ว

    Amazing

  • @99Dragonborn
    @99Dragonborn 4 ปีที่แล้ว

    @blackpenredpen
    It seems like this problem has a sort of symmetry with m and n. What if it didn't, specifically what if it was originally 1/2^(m-n)?

  • @meerable
    @meerable 2 ปีที่แล้ว

    And yet, I didn't understand how we changed the summation order.

  • @damnryder
    @damnryder 5 ปีที่แล้ว +4

    Imagine if you write my mathematics exam paper.....
    i'll get 200 out of 100....

  • @fatimajunejo3960
    @fatimajunejo3960 2 ปีที่แล้ว

    I owe you

  • @renugadevithangavinayagar
    @renugadevithangavinayagar 4 ปีที่แล้ว

    Hi sir. How to convert product of double summation into single summation for general limits. Give me an idea.

  • @azzamlabib4785
    @azzamlabib4785 5 ปีที่แล้ว +1

    wow, i just read an article about fubini principle. What a coincidence 🤔

  • @rhversity5965
    @rhversity5965 5 ปีที่แล้ว +1

    What if the limits of summation were different for the double summation? How would we switch the order then?

    • @ethanJ496
      @ethanJ496 5 ปีที่แล้ว

      Everything he did here can be done by drawing a triangle.
      For any other shape, it's basically the same method... you just need to find the reverse function.

  • @99570Awesome
    @99570Awesome 5 ปีที่แล้ว

    Can someone explain the step that he made at 5:40? When summing the black series?

    • @stephenbeck7222
      @stephenbeck7222 5 ปีที่แล้ว

      The first term in the summation is 1/2^m, and then each successive term is the previous term times 1/2. When that happens you have a geometric series (google that for more) which has an infinite convergent sum of a_1 / (1-r), as long as r is smaller than 1. Since r=1/2, it does converge so bprp can replace the summation with the fraction he does.

  • @ffggddss
    @ffggddss 5 ปีที่แล้ว +2

    Actually, the original summation order is also pretty easy, after noticing that
    ∑[n=1,m] 1/2ⁿ is always short of 1 by exactly the last included term, so it's
    1 - 1/2ᵐ :
    ∑[m=1,∞] ∑[n=1,m] 1/2ᵐ⁺ⁿ
    = ∑[m=1,∞] (1/2ᵐ ∑[n=1,m] 1/2ⁿ)
    = ∑[m=1,∞] 1/2ᵐ [1 - 1/2ᵐ]
    = ∑[m=1,∞] (1/2ᵐ - 1/4ᵐ)
    = 1 - ⅓
    = ⅔
    Also, another way to find the limits for the re-ordered sum, is to draw m,n axes; plot the grid points called out by the original summation; then notice how the indices have to be bounded when summed in the new order, so that the same grid points are covered.
    Fred

  • @prakharshankar8636
    @prakharshankar8636 5 ปีที่แล้ว +1

    Evaluate: lim x tending to 1+ 2^(-2)^(1/1-x).

  • @uchirrod
    @uchirrod 5 ปีที่แล้ว +3

    Hey dude. i was navigating through internet and i depared myself with this problem: int_0^1 e^x(1+e^x/(cosx)^2) dx. After several tries, i got nowhere, so can you solve it in a video?

  • @disharibhaduri6419
    @disharibhaduri6419 5 ปีที่แล้ว

    Hey please do more double summation videos, please...

  • @dileep_j203
    @dileep_j203 5 ปีที่แล้ว

    Black pen redpen yay:)!!

  • @alan2here
    @alan2here 5 ปีที่แล้ว

    I wonder if this allows for weird nifty refactoring of nested loops in coding?

  • @aneeshsrinivas892
    @aneeshsrinivas892 5 ปีที่แล้ว

    can u use a double summation as a series of comparison in limit or direct comparison test?

  • @kevinc9059
    @kevinc9059 5 ปีที่แล้ว

    triple summation to the power of a double summation or else i will crunch you

  • @pholioschenouda5395
    @pholioschenouda5395 5 ปีที่แล้ว

    Can i get help how to solve this question:
    Find Xs such that when you divide X by 2 the remainder is 1 and when divided by 3 the rem. is 2 and when divided by 4 the rem.is 4 and when divided by 5 the rem. is 4 and when divided by 6 the rem. is 5
    And it a pure number theory/congruence question (modulos aren't relatively prime)
    And if #BPRP can explaim this topic in a video it would be so cool
    Thanks guys❤️

    • @rodrigolopez3874
      @rodrigolopez3874 5 ปีที่แล้ว

      The lowest answer is 59, but the general solution is 60*n - 1 for any integer n greater than 0.
      This and any problem like this can be resolved by the chinese remainder theorem, take a look here:
      en.wikipedia.org/wiki/Chinese_remainder_theorem

  • @rodrigolopez3874
    @rodrigolopez3874 5 ปีที่แล้ว

    I was trying this myself and i get 3/2 times sum(m=1 to infinity) of m/4^m... How can i resolve this?

  • @norielsylvire4097
    @norielsylvire4097 5 ปีที่แล้ว

    Very interesting

  • @elyseepasteur6163
    @elyseepasteur6163 5 ปีที่แล้ว

    Could you give more détails make clear the last two lines? Get me update at This please!

  • @jordibruggeman6302
    @jordibruggeman6302 5 ปีที่แล้ว +1

    When I don't pay too much attention you speak Chinese

  • @goodboi3407
    @goodboi3407 5 ปีที่แล้ว

    Hey, can you solve this integral: (x^(-1/2) *ln(x))/(x-1) dx from 0 to infinity. But solve the integral using residues. That is a really interesting thing.

  • @xnick_uy
    @xnick_uy 5 ปีที่แล้ว

    I'm trying your summation-swap method for the sequence (-1)^(2*m+2*n -1). But something is not working!!

    • @robertcotton8481
      @robertcotton8481 5 ปีที่แล้ว

      That just a bunch of negative ones so it diverges cant use techniques on divergent series

  • @reynaldomesmo
    @reynaldomesmo 5 ปีที่แล้ว +1

    I can't understand the fifth line... 😢
    Can you make a video about it? Please?

    • @ambigramm
      @ambigramm 5 ปีที่แล้ว +1

      Search for the proof, that the geometric Series converges in the internet. You should find all the calculation steps to the 5th line.

    • @reynaldomesmo
      @reynaldomesmo 5 ปีที่แล้ว +1

      @@ambigramm thank you, man! I figured it out! And it's very simple... -_- (shame)

  • @extendedreal
    @extendedreal 5 ปีที่แล้ว

    You look like my math teacher.

  • @joaovictorsouzadeandrade9713
    @joaovictorsouzadeandrade9713 5 ปีที่แล้ว

    I've thought about a simple problem this week and I couldn't solve it. The problem is the following: "can we find a general expression for the coeficients of the polynomial P(x)=(x-1)(x-1/2)(x-1/4)...?". Please, I'm really getting crazy

  • @Pestrutsi
    @Pestrutsi 5 ปีที่แล้ว

    M O R E
    F U B I N I

  • @karanrawat1659
    @karanrawat1659 5 ปีที่แล้ว +3

    Brooooo, one question
    Do you study these techniques or you play with these numbers??

    • @OrangeC7
      @OrangeC7 5 ปีที่แล้ว +2

      Both?

  • @imtiazrahman1977
    @imtiazrahman1977 5 ปีที่แล้ว +2

    The voice crack at 0:51 though...
    BOOO

  • @David-ww2sg
    @David-ww2sg 5 ปีที่แล้ว +1

    5:56 "This is not an integral sign so please don't get too excited." xD
    Now you've said that, you need to make a summation video involving integrals!

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว +1

      David yea, see description

    • @David-ww2sg
      @David-ww2sg 5 ปีที่แล้ว

      @@blackpenredpen :o Yes!!

  • @VaibhavKatoria
    @VaibhavKatoria 5 ปีที่แล้ว

    Please make gmat quant video also

  • @chirayu_jain
    @chirayu_jain 5 ปีที่แล้ว

    Make a video on how to do integration by parts in definite integral

  • @willnewman9783
    @willnewman9783 5 ปีที่แล้ว +1

    Why did you interchange the order of summation?

    • @willnewman9783
      @willnewman9783 5 ปีที่แล้ว

      @@amaankazi6406 To me, it seems easier to solve it without exchanging the sums.

  • @dhoyt902
    @dhoyt902 5 ปีที่แล้ว

    Brilliant has youtube learning by the Balls!

  • @shandyverdyo7688
    @shandyverdyo7688 5 ปีที่แล้ว +1

    Sometimes, the double summation is more complicated then the double integral. Isn't it?

  • @nirbhaiverma7405
    @nirbhaiverma7405 5 ปีที่แล้ว +1

    Doraemon theme song

  • @allmight801
    @allmight801 5 ปีที่แล้ว

    You should change your name to blackpenredpenbluepen

  • @zhihuiyu549
    @zhihuiyu549 5 ปีที่แล้ว

    where is ur question from? i mean how do u get this question?

    • @blackpenredpen
      @blackpenredpen  5 ปีที่แล้ว

      A lot of these exercises are the ones that I have done before as a student. This is just an extension of my calc 2 series question.

    • @zhihuiyu549
      @zhihuiyu549 5 ปีที่แล้ว

      @@blackpenredpen i like ur video so much,because when i get to the usa,every math question is easy,i can get some new logical thinking from u ,thanks!

  • @lucagagliano5118
    @lucagagliano5118 5 ปีที่แล้ว

    Shouldn't you prove there's a bijection between the first indices set and second (to justify your swapping of summations)?

  • @ناصرالبدراني-ش9س
    @ناصرالبدراني-ش9س 5 ปีที่แล้ว

    0 dislikes, it says how wonderful you are

  • @ahmidouaouladhadj7576
    @ahmidouaouladhadj7576 2 ปีที่แล้ว

    Pretty

  • @bkky9
    @bkky9 5 ปีที่แล้ว

    This only works because the 2's are the same right? I.e. it wouldn't work if it was (1/2^n)*(1/3^n)

    • @IOffspringI
      @IOffspringI 5 ปีที่แล้ว

      Do you mean the switch of the summation? That works generally. If you mean pulling one term to the front, that works as long as the term you're moving does not contain the inner index. So it would also work with (1/2^m)*(1/3^n)

  • @holyshit922
    @holyshit922 ปีที่แล้ว

    It looks like Cauchy product of
    sum(1/4^(m)*1/2^(n-m),m=1..infinity,n=1..infinity)
    (sum(1/4^(m),m=1..infinity)*sum(1/2^n,n=1..infinity)
    Whats wrong with this approach ?

  • @lapischicken
    @lapischicken 5 ปีที่แล้ว

    0:51 I didn't hear that :)

  • @khalidlol7575
    @khalidlol7575 5 ปีที่แล้ว

    Sorry; Can you give us some exercises for this ?

  • @alitarek7164
    @alitarek7164 5 ปีที่แล้ว +1

    Are you a programmer blackpenredpen?