A quadratic floor equation.

แชร์
ฝัง
  • เผยแพร่เมื่อ 7 ก.พ. 2025
  • We solve a nice quadratic equation involving the floor function.
    Please Subscribe: www.youtube.co...
    Merch: teespring.com/...
    Personal Website: www.michael-pen...
    Randolph College Math: www.randolphcol...
    Randolph College Math and Science on Facebook: / randolph.science
    Research Gate profile: www.researchga...
    Google Scholar profile: scholar.google...
    If you are going to use an ad-blocker, considering using brave and tipping me BAT!
    brave.com/sdp793
    Buy textbooks here and help me out: amzn.to/31Bj9ye
    Buy an amazon gift card and help me out: amzn.to/2PComAf
    Books I like:
    Abstract Algebra:
    Judson(online): abstract.ups.edu/
    Judson(print): amzn.to/2Xg92wD
    Dummit and Foote: amzn.to/2zYOrok
    Gallian: amzn.to/2zg4YEo
    Artin: amzn.to/2LQ8l7C
    Differential Forms:
    Bachman: amzn.to/2z9wljH
    Number Theory:
    Crisman(online): math.gordon.edu...
    Strayer: amzn.to/3bXwLah
    Andrews: amzn.to/2zWlOZ0
    Analysis:
    Abbot: amzn.to/3cwYtuF
    How to think about Analysis: amzn.to/2AIhwVm
    Calculus:
    OpenStax(online): openstax.org/s...
    OpenStax Vol 1: amzn.to/2zlreN8
    OpenStax Vol 2: amzn.to/2TtwoxH
    OpenStax Vol 3: amzn.to/3bPJ3Bn
    My Filming Equipment:
    Camera: amzn.to/3kx2JzE
    Lense: amzn.to/2PFxPXA
    Audio Recorder: amzn.to/2XLzkaZ
    Microphones: amzn.to/3fJED0T
    Lights: amzn.to/2XHxRT0
    White Chalk: amzn.to/3ipu3Oh
    Color Chalk: amzn.to/2XL6eIJ

ความคิดเห็น • 140

  • @jim42078
    @jim42078 4 ปีที่แล้ว +391

    This is getting out of hand. Now there are two of them.

    • @ruanramon1
      @ruanramon1 4 ปีที่แล้ว +29

      mitosis

    • @md2perpe
      @md2perpe 4 ปีที่แล้ว +25

      He just applied Banach-Tarski on himself for a while.

    • @IoT_
      @IoT_ 4 ปีที่แล้ว +1

      Nute Gunray reacted.

  • @goodplacetostop2973
    @goodplacetostop2973 4 ปีที่แล้ว +145

    13:22
    That double Michael at the beginning though 😂

    • @arshsverma
      @arshsverma 4 ปีที่แล้ว +10

      Just wanted to know, do you even watch the entire video before commenting?

    • @goodplacetostop2973
      @goodplacetostop2973 4 ปีที่แล้ว +51

      Arsh Shankar Verma Usually, I go straight to the end for the timestamp, then I watch the entire video to see if there’s something else funny then I watch with my real account to increase TH-cam engagement.

    • @MichaelPennMath
      @MichaelPennMath  4 ปีที่แล้ว +59

      Wow! You are a real champion for the cause!!

    • @goodplacetostart9099
      @goodplacetostart9099 4 ปีที่แล้ว +9

      Good place to start 0:00

    • @leif1075
      @leif1075 2 หลายเดือนก่อน

      ​@@MichaelPennMathwhy use 1/2..i see no reason to so isn't that arbitrary?

  • @TwilightBrawl59
    @TwilightBrawl59 4 ปีที่แล้ว +66

    7:46 - 7:48 : missed opportunity for Micheal #2 to come and clean the board 😁

    • @mrl9418
      @mrl9418 4 ปีที่แล้ว +3

      This is genius and warrants some consideration

  • @armacham
    @armacham 3 ปีที่แล้ว +6

    I like the way SyberMath solves equations with the floor function.
    The equality is true when floor(xx + 1) = n = floor(2x), where n is some integer.
    So the equality can only be true when both sides of the equation are equal to "n." Which gives you four nice inequalities that must be true for any solution
    n

  • @ERROR204.
    @ERROR204. 4 ปีที่แล้ว +7

    This is such a nice pace, perfectly understandable and still not monotonous. Not a lot of teachers can do that.

  • @davidseed2939
    @davidseed2939 3 ปีที่แล้ว +1

    I guess Micheal doesnt read these comments since he never comments on some really good ideas for simplifying the proof.
    My offering is to set x=n+f
    n =[x]. f fraction 0

  • @arya6085
    @arya6085 4 ปีที่แล้ว +2

    Usually TH-cam maths is way too far ahead of me but this is just close enough that I can grasp at the main concepts and learn from there. Great content mate

  • @iaagoarielschwoelklobo1894
    @iaagoarielschwoelklobo1894 4 ปีที่แล้ว +2

    0:01 It's always nice when your brother Michael Nepp comes to help you with your class

  • @rogerlie4176
    @rogerlie4176 4 ปีที่แล้ว +42

    A more strraightforward way to see there are no solutions for x ⩾ 2:
    LHS = ⌊x^2 + 1⌋ ⩾ ⌊2x + 1⌋ > ⌊2x⌋ = RHS

    • @curious.george08
      @curious.george08 3 ปีที่แล้ว

      Right. I was thinking the same thing. Wonder why he went for that approach

  • @vikaskalsariya9425
    @vikaskalsariya9425 4 ปีที่แล้ว +26

    idk why I was scared by seeing 2 michaels at the same time.

  • @ДенисЛогвинов-з6е
    @ДенисЛогвинов-з6е 4 ปีที่แล้ว +47

    Nice. At the beginning I thought you'd leave us a "homework" with similar problem. I think it'd be nice))

    • @MichaelPennMath
      @MichaelPennMath  4 ปีที่แล้ว +25

      Great suggestion!

    • @chessematics
      @chessematics 4 ปีที่แล้ว +2

      That will be really nice for lockdown exercise

    • @IoT_
      @IoT_ 4 ปีที่แล้ว

      Отлично придумано.

    • @ДенисЛогвинов-з6е
      @ДенисЛогвинов-з6е 4 ปีที่แล้ว

      @@IoT_ ещё бы)

    • @chessematics
      @chessematics 4 ปีที่แล้ว

      @@IoT_ english plz, i don't understand Russian

  • @Raynover
    @Raynover 4 ปีที่แล้ว +5

    I think the most intuitive way of approaching this is rejecting anything outside the interval (0,2) after solving the inequality x²+1-2x≥1. The rest is just technical.

  • @LucaIlarioCarbonini
    @LucaIlarioCarbonini 4 ปีที่แล้ว +4

    This kind of explanation, patient with an easy example, is what I look for when I try to understand differential geometry.

  • @tgx3529
    @tgx3529 3 ปีที่แล้ว

    floor(1+x^2)=1+ floor(x^2). floor(2x)-floor(x^2)=1 . We have so n≤2x

  • @thayanithirk1784
    @thayanithirk1784 4 ปีที่แล้ว +18

    Nice editz 😍

  • @jimskea224
    @jimskea224 4 ปีที่แล้ว +8

    Define y=x-1 and simplify to get floor(y^2+2y)=floor(2y). So y^2 has to be in the interval [0,1) and take it from there.

    • @jonaskoelker
      @jonaskoelker 3 ปีที่แล้ว

      Did you mean floor(y^2+2y)=floor(2y+2)?

  • @subpopulations
    @subpopulations 4 ปีที่แล้ว +1

    For [2, infinity)
    Can't you just note that x^2 >= 2x
    So floor(x^2) >= floor(2x)
    Thus floor(x^2) +1 > floor(2x)
    Then because integers don't affect the result of a floor of added beforehand
    floor(x^2 +1) > floor(2x)
    And avoid all that piece wise checking.

  • @zeravam
    @zeravam 4 ปีที่แล้ว +1

    Excellent resolution Michael! I love this kind of exercises and I support the suggestion for you about leave us some "homework" about these. You are doing a great job!

  • @dclrk8331
    @dclrk8331 4 ปีที่แล้ว +1

    Great to see Michael using new ideas and innovating.

  • @philipbaldwin7203
    @philipbaldwin7203 4 ปีที่แล้ว +1

    I think it is easier just to start off with subintervals given by 1/2 , 1 ,root(2), 1.5, root(3) ,2 and then examine each. Thanks for all your analyses!

  • @khshgeiye4810
    @khshgeiye4810 4 ปีที่แล้ว +1

    Some next level video you got there.

  • @failsmichael2542
    @failsmichael2542 4 ปีที่แล้ว

    Another solution: let floor(x^2 + 1) = floor(2x) = n in Z then since x^2 + 1 >= 1, n >= 1. From the definition of the floor function n = n^2/4 so n = 1, 2, 3.
    case 1: n = 1 we have 1/2

  • @adeeb1787
    @adeeb1787 4 ปีที่แล้ว +8

    1:41
    For "Our" Solution
    USSR anthem playing at the back

  • @dingo_dude
    @dingo_dude 4 ปีที่แล้ว

    I love this channel! Always nice to start my day off with a little math

  • @trinne
    @trinne 4 ปีที่แล้ว

    Especially when the other side of the equation is linear (well, at least inside flooring), drawing a picture would easily give quite nice intuition on what values we are actually trying to dig out.

  • @איתןגרינזייד
    @איתןגרינזייד 4 ปีที่แล้ว +1

    Finally we get another double Michael

  • @wyboo2019
    @wyboo2019 3 ปีที่แล้ว

    im gaining an interest in these floor function equations. i used this as a guide to find the solutions to floor(x^2) - floor(x) - 1 = 0. desmos actually gets it wrong and has sqrt(3) as a solution when it's not

  • @anushrao882
    @anushrao882 4 ปีที่แล้ว

    This channel is becoming more entertaining. Keep it up 👍🏼

  • @wojciechgilicki6815
    @wojciechgilicki6815 3 ปีที่แล้ว

    It seems to be pretty easy to find answers, when you approach it from the graphical side, because both sides are not do hard to draw on the cords system.

  • @leecherlarry
    @leecherlarry 3 ปีที่แล้ว +1

    compi did it too very neatly:
    *Reduce[Floor[x^2 + 1] == Floor[2 x], x, Reals]*

  • @Tiqerboy
    @Tiqerboy 4 ปีที่แล้ว

    The floor function is what I'm more familiar with, the truncation that happens in computer science. When you typecast a real number to an integer, it discards the part after the decimal, so 2.9 becomes 2, 3.01 becomes 3 and so on. Having said that, I went through a fair bit less work than Michael did to come up with the correct answer. He does have a typo on the board near the end where he includes √3 when of course it should be excluded in the final answer. To wit, you end up with these expressions:
    2x ≥ 1 .... x ≥ 0.5
    x² + 1 < 3 .... x < √2
    2x ≥ 3 .... x >= 1.5
    x² + 1 < 4 ..... x < √3
    Combining these four inequalities you get
    x = [0.5,√2) OR x = [1.5,√3)

    • @Tiqerboy
      @Tiqerboy 4 ปีที่แล้ว

      @@angelmendez-rivera351 I guess I got the right answer because it didn't involve any negative numbers.

  • @parameshwarhazra2725
    @parameshwarhazra2725 4 ปีที่แล้ว

    Michael has just showed the properties of a quantum particle. He can present at more than one place at a time with different states. Amazed!!!!!

  • @xriccardo1831
    @xriccardo1831 4 ปีที่แล้ว +3

    This edit is so cool

  • @jonaskoelker
    @jonaskoelker 3 ปีที่แล้ว +1

    By the definition of floor there exists an n in Z such that
    n = 1, which is a contradiction.
    If x = 0 then n

  • @gustavinho1986
    @gustavinho1986 4 ปีที่แล้ว

    There is an easy way to see that the only solutions are in the interval (0,2). Using that a-1

  • @FrogsOfTheSea
    @FrogsOfTheSea 4 ปีที่แล้ว

    What seemed more intuitive to me was to look at possible values that the two floor functions could take - I.e. 1,2,3,4, etc. for each value you can calculate a range of x values that would give that answer. The overlap in ranges for x of both functions are your solutions

  • @laincoubert7236
    @laincoubert7236 2 ปีที่แล้ว

    i feel like there's an easier and more intuitive "approximation" of the solution. note that if floor(x) = floor(y), then abs(x - y) < 1, because floor(x) ≤ x, y < floor(x) + 1. from this abs inequality we get that x \in (0, 2), therefore floor(2x) takes only the values of {0, 1, 2, 3}. then you get 4 pretty easy cases that are almost identical to your second half of the solution and make more sense to a person who's less skilled when it comes to algebra.

  • @binaryagenda
    @binaryagenda 4 ปีที่แล้ว +15

    Solved this in a couple of minutes by just plotting the two functions by hand, they are simple enough.

    • @ushasingh6204
      @ushasingh6204 4 ปีที่แล้ว +5

      Oh so you found out exact ranges by hand

    • @demenion3521
      @demenion3521 4 ปีที่แล้ว

      @@ushasingh6204 it's not too bad to see where the bounds should be approximately and then it's also not hard to check where exactly those bounds have to be

    • @demenion3521
      @demenion3521 4 ปีที่แล้ว

      @@angelmendez-rivera351 graphing results more or less in a kind of guess-and-check method. it requires more guessing, but should be slightly easier to check, even though the full solution is also not too bad here

    • @binaryagenda
      @binaryagenda 4 ปีที่แล้ว +2

      There's nothing inaccurate in doing this by graphing. Once you take the floor functions the two graphs are completely predictable, and the values where the y coordinates change are straightforward (at worst square roots of whole numbers).

  • @hydraslair4723
    @hydraslair4723 4 ปีที่แล้ว +2

    Ah, so that's how you manage to output so many videos.
    There's an entire army.

  • @thefranklin6463
    @thefranklin6463 4 ปีที่แล้ว +1

    My man got his clones slaving away in the corner of the screen

  • @jamescollis7650
    @jamescollis7650 4 ปีที่แล้ว

    my approach to case 2 was a little different. If x^2+1 is at least 1 more than 2x, then the floor of x^2+1 must be bigger than the floor of 2x:
    x^2+1>=2x+1=>flr(x^2+1)>=flr(2x+1)=flr(2x)+1 => flr(x^2+1)>flr(2x)
    also x^2+1-2x>=1 (x-1)^2>=1 =1 x>=2

  • @neomorphicduck
    @neomorphicduck 4 ปีที่แล้ว

    Aww, I got a post on my birthday. How thoughtful of Michael.

  • @evanev7
    @evanev7 4 ปีที่แล้ว +2

    The editing is fun, I approve

  • @kingfrozen4257
    @kingfrozen4257 4 ปีที่แล้ว +1

    If floor(f)=floor(g) then f-g should lay in -1 to 1 so x is on 0 to 2 and if u break it to 1/2 width intervals u good to go

  • @asim3351
    @asim3351 3 ปีที่แล้ว

    Excellent

  • @ddiq47
    @ddiq47 4 ปีที่แล้ว

    Loved the intro

  • @giuseppebassi7406
    @giuseppebassi7406 4 ปีที่แล้ว

    I graphed by hand the two equations (that's not so difficult) and i easily found solutions in a couple of minutes

  • @mrmathcambodia2451
    @mrmathcambodia2451 3 ปีที่แล้ว

    Ohh..So good ,I like this solution.

  • @spicymickfool
    @spicymickfool 3 ปีที่แล้ว

    Isn't it always the case that Floor[f(x)] = Floor[g(x)] implies |f(x) -g(x)|

  • @elengul
    @elengul 4 ปีที่แล้ว +3

    I have to admit, I did SOME of the work to get to the solution, but then I started hunting an pecking to check values and totally missed that the the interval [sqrt(2), 1.5) is NOT a solution. That'll teach me 😂

  • @zygoloid
    @zygoloid 4 ปีที่แล้ว

    Before watching: find the points where the two sides change value:
    x, [x²+1], [2x]:
    0 if n ≥ 3, so no more solns.
    So: [½, √2) U [1½, √3).

  • @JM-us3fr
    @JM-us3fr 4 ปีที่แล้ว

    That was a bit of casework, but I liked it. Suprisingly numerous number of cases for such a simple problem.

  • @ruanramon1
    @ruanramon1 4 ปีที่แล้ว +1

    You must hire the second Michael for next videos

  • @Blabla0124
    @Blabla0124 4 ปีที่แล้ว

    This is an example where itmakes sense to use excel first to get an idea. That way you see the various steps coming much easier

    • @Tiqerboy
      @Tiqerboy 4 ปีที่แล้ว +1

      I'm guessing if this is a math contest problem, you wouldn't have access to electronic aids such as that.

  • @beaverlv5566
    @beaverlv5566 4 ปีที่แล้ว

    Guys I've already seen that kind of problems, it's as easy as Michael call other Michael for other universe to help him. In Rick and Morty explain this kind of things

  • @Ennar
    @Ennar 4 ปีที่แล้ว

    Cases 1 and 2 are unenlightening as it gets. This is how you solve when you know the solution beforehand. Rather, by the definition of the floor function, we have:
    (1) [2x] = [x^2+1]

  • @Goku_is_my_idol
    @Goku_is_my_idol 4 ปีที่แล้ว +1

    I solved it☺️😆. Same method almost. I proved no solutions for anything other than 0 to 2 then just checked everything like u did.😁

  • @goseigentwitch3105
    @goseigentwitch3105 4 ปีที่แล้ว

    I feel like your solution took like 10x longer than graphing it.
    floor(2x) is going to be 0 from x = [0,0.5), 1 from x = [0.5,1), 2 from x = [1,1.5), 3 from x = [1.5,2), 4 or more from x = [2,infinity)
    floor(1 + x^2) is going to be 1 from x = [0,1), 2 from x = [1,sqrt(2)), 3 from [sqrt(2),sqrt(3)), 4 from [sqrt(3),2)
    and they line up at x = [0.5,sqet(2)) and x = [1.5,sqrt(3))

  • @kevin27966
    @kevin27966 4 ปีที่แล้ว

    I think this was a poor problem to choose, if the goal was to explore richness of floor-related algebra. This took me 3 minutes and no complex algebra. I just looked at question "What values of each function give outputs 0, 1, 2, 3...?" For f==floor(x^2+1), this is simply 0={}, 1=f[0..1), 2=f[1..sqrt(2)), 3=f[sqrt(2)..sqrt(3)), etc. For g==floor(2x), it's just 0=g[0,.5), 1=g[.5,1), 2=g[1,1.5), 3=g[1.5,2). My intent was to find a deeper pattern for the two functions , describe that pattern algebraically, then solve for solutions where the algebraic patterns were equal. But alas. No need for a pattern. My quick/mindless 0,1,2,3 solved the problem on the spot. The intersection of f() solutions and g() were clearly non-empty at 1,2, and 3, and trivial to list. Obviously f(x) was never less than 1, and obvious that for output of 4 or more, g(x) would always need higher inputs than f(x).

  • @050138
    @050138 4 ปีที่แล้ว +3

    Interesting question.... Could arrive at the solution,
    x ∈ [0.5, √2) U [1.5, √3)

  • @charlesdesouza9313
    @charlesdesouza9313 4 ปีที่แล้ว +1

    what can i study now to understand it all?

    • @zeravam
      @zeravam 4 ปีที่แล้ว +1

      Real numbers analysis

  • @johnnyk5
    @johnnyk5 3 ปีที่แล้ว

    Another way to write the solution is U [n/2, sqrt(n)) for n= 1, 2, 3. Interesting.

  • @subhendupradhan4636
    @subhendupradhan4636 4 ปีที่แล้ว

    Shorter & easier method:
    Using [f(x)] = [g(x)] => | f(x) - g(x) | < 1, we get | x^2 + 1 - 2x | < 1 i.e. 0 < x < 2.
    Since, 0 < x < 2 => 1 < x^2 + 1 < 5 & 0 < 2x < 4, therefore, 3 cases arise:
    (I): 1 < x^2 + 1 < 2, 1

  • @Mrpallekuling
    @Mrpallekuling 4 ปีที่แล้ว

    I did a graph of x*2 + 1 and then its floor function.
    Then I did a graph of 2x and then its floor function.
    This immediately gives the possible interval.

    • @yuvrajsarda6660
      @yuvrajsarda6660 4 ปีที่แล้ว

      I think the more natural way to do this problem is actually to do it graphically, as that's where the intuition kicks in. It's clearer what you're doing that way. You don't even need desmos or another graphing calculator to do this. It's simple enough to accurately draw by hand, and then figure out what's exactly going on. Nevertheless, at the end of it, the proof would be very similar to the ideas the video presented. You'd have to go through the casework he's done. However, graphing would be the most intuitive start at the problem, and then casework feels more justified and sound.

  • @backyard282
    @backyard282 4 ปีที่แล้ว

    I see you very much love floor function, but what about the ceiling function?

  • @stephomn
    @stephomn 4 ปีที่แล้ว

    Interesting problem

  • @factorization4845
    @factorization4845 4 ปีที่แล้ว

    I just start testing critical points for small values, and then when I see L.H.S.=R.H.S.+1 (without floor function), that is already a stop because LHS increases faster than RHS

  • @djvalentedochp
    @djvalentedochp 4 ปีที่แล้ว

    The floor is lava is back again!!

  • @a_llama
    @a_llama 4 ปีที่แล้ว +1

    oof that production value!

  • @mathismind
    @mathismind 4 ปีที่แล้ว

    nice problem dude

  • @semi59o
    @semi59o 4 ปีที่แล้ว +2

    I don’t know why. I just somehow hate floor function (ofc also ceil function)

    • @thedoublehelix5661
      @thedoublehelix5661 4 ปีที่แล้ว

      lol it is sorta weird

    • @semi59o
      @semi59o 4 ปีที่แล้ว

      The Double Helix I was referring to the intro lol

  • @user-yh6lr8wy9s
    @user-yh6lr8wy9s 4 ปีที่แล้ว

    This can be done easily with graphical approach if someone knows how to draw graphs of floor of functions

    • @thiantromp6607
      @thiantromp6607 4 ปีที่แล้ว +1

      Yes, but that isn't really a proof.

    • @user-yh6lr8wy9s
      @user-yh6lr8wy9s 4 ปีที่แล้ว

      @@thiantromp6607 it is, if graphs intersect then they are equal...just draw the graphs... you'll understand how rigorous it is

    • @thiantromp6607
      @thiantromp6607 4 ปีที่แล้ว +1

      @@user-yh6lr8wy9s you cannot draw the graphs from negative infinity to positive infinity. You do have to show that [x^2+1] grows quicker and stays above [2x] forever in both directions. Very simple and intuitive, but definitely necessary for a rigorous proof.

    • @user-yh6lr8wy9s
      @user-yh6lr8wy9s 4 ปีที่แล้ว

      @@angelmendez-rivera351 what an idiot, the graphs are horizontal lines, you don't even need any apparatus to figure out where horizontal lines are intersecting

    • @user-yh6lr8wy9s
      @user-yh6lr8wy9s 4 ปีที่แล้ว

      @@angelmendez-rivera351 maybe if you drew the graphs you would understand what i am talked about, it is very clear idiots like you can't think beyond these stupidly long so called proofs...

  • @bharatsethia9243
    @bharatsethia9243 4 ปีที่แล้ว

    Since the 2 functions inside the floor function are pretty easy to graph, isn't it easier to just draw the graph and find the solution?

    • @jomama3465
      @jomama3465 4 ปีที่แล้ว

      That's a solution but it's too 'forceful'

  • @padraiggluck2980
    @padraiggluck2980 7 หลายเดือนก่อน

    I plotted in Desmos.

  • @kingyodah5415
    @kingyodah5415 4 ปีที่แล้ว

    Only now I understand how Nute Gunray felt in SW phantom menace lol

  • @danielduranloosli
    @danielduranloosli 4 ปีที่แล้ว

    I must say I disliked the fact that all those very conveniently efficient intervals were taken out of a hat (cooked up beforehand). The proofs are not so fun, but proving a limited set of possible values for the floors ({1;2;3}) and then solving for x in each case felt much more in control.

  • @niranjanchakraborty1139
    @niranjanchakraborty1139 2 ปีที่แล้ว

    Ans x= 1( no need to calculate)

  • @erickherrerapena8981
    @erickherrerapena8981 4 ปีที่แล้ว +1

    Dos Michael jajajaja.

  • @Andreyy98
    @Andreyy98 2 ปีที่แล้ว

    Liking floor function hmm... might be hidden affinity to programming 😉

  • @stvp68
    @stvp68 4 ปีที่แล้ว

    OT but I love the dark red color of those pants

  • @irwandasaputra9315
    @irwandasaputra9315 2 ปีที่แล้ว

    x^2-2x+1=0
    (x-1)(x-1)
    x=1

  • @lapicethelilsusboy491
    @lapicethelilsusboy491 2 ปีที่แล้ว

    Floor function? More like "stair" function.

  • @leif1075
    @leif1075 2 หลายเดือนก่อน

    WHY CHOOSE 1 HALF ANS 2 THAT IS TOTALLY CONTRIVED..MAKES NO SENSE..PLEASE EXPLAIN

  • @moses8692
    @moses8692 4 ปีที่แล้ว

    Damn the edit

  • @jbthepianist
    @jbthepianist 4 ปีที่แล้ว

    Who’s that other guy?

  • @azzamlabib4785
    @azzamlabib4785 4 ปีที่แล้ว

    i almost thought the guy on the left is his twin

  • @GregorDuckman
    @GregorDuckman 4 ปีที่แล้ว

    FLOOR GANG

  • @ErmisSouldatos
    @ErmisSouldatos 4 ปีที่แล้ว

    Wow! You got yourself a clone! Did you go to Kamino or order him online?

  • @_abc.
    @_abc. 4 ปีที่แล้ว

    @Michael Penn: Not the efficient solution. So not impressive one unlike your previous. Graphically it is magic. Try.

  • @natepolidoro4565
    @natepolidoro4565 4 ปีที่แล้ว

    If i had cancer and could wish for one thing, i would want prof. penn to end a video with "ok, so this is a sexy place to stop" in the same serious tone as all the other videos. OMG i would die of that instead of the cancer. Like if u agree so he can see it.

  • @sriramamurthydwibhashi2121
    @sriramamurthydwibhashi2121 4 ปีที่แล้ว

    solution given here too long and a lengthy.Teacher would have used property of greatest integer function as
    [K + 1] = [ K ] + 1 for a shorter solution.

  • @kinshuksinghania4289
    @kinshuksinghania4289 4 ปีที่แล้ว

    What will be the floor of 0.99999999999.........∞???? I'm gonna go with 1

  • @markregev1651
    @markregev1651 4 ปีที่แล้ว

    oof now there are two of them

  • @mrhatman675
    @mrhatman675 3 ปีที่แล้ว

    Did you find a way to clone yourself lo!

  • @radoonridoan7231
    @radoonridoan7231 4 ปีที่แล้ว

    wtf two michaels

  • @anuptotla9845
    @anuptotla9845 4 ปีที่แล้ว

    Is it just me or do this guy looks like Mark Zuckerberg from the side

  • @arvindsrinivasan424
    @arvindsrinivasan424 4 ปีที่แล้ว

    Shadow clone jutsu

  • @jcfgykjtdk
    @jcfgykjtdk 4 ปีที่แล้ว +1

    Is him your twin?

  • @wesleydeng71
    @wesleydeng71 4 ปีที่แล้ว

    This is a bit too tedious. By drawing the graphs of the two sides around x=1, one can easily reach the conclusion.