AES II - Finite Field ( Galois Field ) Arithmetic for Advanced Encryption Standard - CSE4003

แชร์
ฝัง
  • เผยแพร่เมื่อ 26 พ.ย. 2024

ความคิดเห็น • 17

  • @NathaShiv
    @NathaShiv 4 ปีที่แล้ว +28

    How did you consider p(x) sir? (In 13:10 of video)

  • @chiraagb
    @chiraagb ปีที่แล้ว +1

    Crystal Clear Explanation !!

  • @ridakhalid6176
    @ridakhalid6176 3 ปีที่แล้ว +1

    Very good explanation 👍

  • @kunalsoni7681
    @kunalsoni7681 3 ปีที่แล้ว +1

    really its so informative video 😊💚

  • @NathaShiv
    @NathaShiv 4 ปีที่แล้ว +1

    Thanks sir..it was clear explanation

  • @mdpaponmiah5504
    @mdpaponmiah5504 ปีที่แล้ว +2

    GF(256) 2nd element should be 0000001 but you said 00000010 .... I think this is 3rd element.... What do u say?

  • @PowersOfTau
    @PowersOfTau 2 ปีที่แล้ว +3

    Wat r d rules to get IR polynomial

  • @aruledwin6911
    @aruledwin6911 ปีที่แล้ว +2

    How can we choose the irreducible polynomial sir?

    • @dhafert.shihab5580
      @dhafert.shihab5580 ปีที่แล้ว

      same question

    • @TheOiseau
      @TheOiseau ปีที่แล้ว +1

      You're free to choose anything you want as long as it can't be factored, meaning it has no roots in your field (mod p). So when working in GF(2^n), you can pick any polynomial of degree n for which neither 0 and 1 are roots.

  • @ahtanahgao
    @ahtanahgao 2 ปีที่แล้ว

    thank you

  • @duwasii
    @duwasii ปีที่แล้ว +1

    Explain irreducible polynomial

    • @TheOiseau
      @TheOiseau ปีที่แล้ว +4

      A polynomial that cannot be factored. A "prime" polynomial, if you will. When you're working in GF(2^n), since everything is mod 2, you need a degree-n polynomial (so it must start with x^n) that ends in +1 (otherwise you could factor an x) and it must have an odd number of terms (to prevent 1 from being a root, mod 2). Anything will work as long as it follows those rules. An example is AES's polynomial, x^8 + x^4 + x^3 + x + 1.

  • @abhishekkanojia2816
    @abhishekkanojia2816 ปีที่แล้ว +2

    How did you consider p(x) sir? (In 13:10 of video)

  • @iriskan999
    @iriskan999 9 หลายเดือนก่อน +1

    Thank you

  • @dhafert.shihab5580
    @dhafert.shihab5580 ปีที่แล้ว

    How can we choose the irreducible polynomial sir?

  • @jahnavimandla6638
    @jahnavimandla6638 ปีที่แล้ว +2

    How can we choose the irreducible polynomial sir?