Math Olympiad | A Very Nice Geometry Problem | Find the angle θ

แชร์
ฝัง
  • เผยแพร่เมื่อ 27 ธ.ค. 2024

ความคิดเห็น • 22

  • @MdShahriarHossain-l1n
    @MdShahriarHossain-l1n วันที่ผ่านมา +4

    A very easy solution (it just took a few seconds to solve!) -
    Draw a perpendicular from point Q. QM will be half of AB( because ABC and QMC are similar). And we know AB=QP. So, Triangle PQM is a 30-60-90 Triangle. Thus, we know that angle PQM is 60°. Angle MQC is 70°. So angle theta= 180-(60+70)=50°.
    Hope this helps!

    • @phungpham1725
      @phungpham1725 วันที่ผ่านมา +2

      Very elegant solution!😊😊😊

    • @MdShahriarHossain-l1n
      @MdShahriarHossain-l1n 15 ชั่วโมงที่ผ่านมา

      @@phungpham1725 Thanks!

  • @quigonkenny
    @quigonkenny 20 ชั่วโมงที่ผ่านมา

    Let CQ = QA = a and AB = PQ = b.
    Draw QT, where T is the point on BC where QT is perpendicular to BC. As QT is also parallel to AB, then ∠CQT and ∠CAB are corresponding angles and thus ∠CQT = ∠CAB = 90°-20° = 70°. As ∠QTC = ∠ABC = 90° and ∠C is common, then ∆QTC and ∆ABC are similar.
    QT/AB = CQ/CA
    QT/b = a/2a = 1/2
    QT = b/2
    Let ∠PQT = α.
    cosα = QT/PQ = (b/2)/b
    cosα = 1/2
    α = cos⁻¹(1/2) = 60°
    θ + α + 70° = 180°
    θ + 60° + 70° = 180°
    θ + 130° = 180°
    [ θ = 180° - 130° = 50° ]

  • @santiagoarosam430
    @santiagoarosam430 วันที่ผ่านมา

    R es la proyección ortogonal de Q sobre BC---> Si AB=a---> QR=a/2---> sen(QPR)=(a/2)/a=1/2---> QPRº=30º ---> AQPº=20º+30º=50º.
    Gracias y saludos.

  • @lasalleman6792
    @lasalleman6792 วันที่ผ่านมา

    Assign a value of 1 to line AC. At 20 degrees, line AB (sine of 20 degrees) will equal .3420. Line QP is thus .3420. Line QC is .5 . Going Pythagorean, consider triangle PQC. Angle at C is 20 degrees. Angle at P is 30 degrees. Angle at apex Q is 130 degrees. Line QM is .1710 . Indicated exterior angle at Q is 130-180 degrees or 50 degrees. Reasonably simple problem.

  • @TheAlavini
    @TheAlavini 23 ชั่วโมงที่ผ่านมา

    Nice solution. Congrats.

  • @imetroangola17
    @imetroangola17 วันที่ผ่านมา

    *_Uma solução bastante elegante!_* Parabéns!🎉🎉🎉

  • @soli9mana-soli4953
    @soli9mana-soli4953 วันที่ผ่านมา

    Tracing the line BQ and setting AQ=QC=x, AB=QP=y, we can write 2 identities with sines law:
    On ABQ
    Y/sin 40=x/sin 70
    On PQC
    Y/sin 20=x/sin alpha
    Alpha is angle QPC
    Comparing we get:
    Sin alpha = sin 70*sin 20/sin 40
    And knowing that
    Sin 70 = sin (90-20)=Cos 20
    Sin 40=2sin 20*cos 20
    Sin alpha =1/2
    Alpha =30
    Theta = 20+30=50

  • @giuseppemalaguti435
    @giuseppemalaguti435 วันที่ผ่านมา +1

    t=2asin20...t/sin20=a/sin(θ-20)..asin20/sin(θ-20)=2asin20...1=2sin(θ-20)...θ-20=30..θ=50

  • @MarieAnne.
    @MarieAnne. วันที่ผ่านมา

    AB = PQ = a, AQ = CQ = b, ∠CPQ = α
    From △ABC we get:
    tan(20°) = a/(2b)
    Using law of sines in △CPQ we get
    sin(α) / b = sin(20°) / a
    sin(α) = b/a * sin(20°) = b/a * a/(2b) = 1/2
    α = 30°
    θ is an exterior angle of △CPQ, which is equal to the sum of its two opposite angles
    θ = α + 20° = 30° + 20°
    *θ = 50°*

    • @mumosam
      @mumosam 18 ชั่วโมงที่ผ่านมา

      Please correct it as :
      From △ABC we get:
      Sin(20°) = a/(2b)

  • @kateknowles8055
    @kateknowles8055 วันที่ผ่านมา

    These problems seem ten times easier after they have been worked out!
    (I have deleted my false trails this time.)
    Angle A =70 degrees
    If QM is the perpendicular from Q to BC, it is (1/2) of a because triangles ABC and QMC are similar. PQM is 60 degrees and QPM is 30 degrees in triangle PQM.
    CPM =70 degrees so theta = 180- 60-70
    Theta = 50 degrees

  • @oscarcastaneda5310
    @oscarcastaneda5310 วันที่ผ่านมา

    I set AQ = 1, constructed BQ, found AQ equal to 2sin(20), then solved sin(theta - 20) = 1/2 from which theta = 50 degrees.

  • @rodicabrudea923
    @rodicabrudea923 วันที่ผ่านมา

    cos ( in ABMQ

  • @ناصريناصر-س4ب
    @ناصريناصر-س4ب วันที่ผ่านมา

    We have sin(20)=AB/AC=PQ/2QC and PQ/sin(20)=QC/sin(θ-20) and from it 2sin(20)=sin(20)/sin(θ-20) so sin(θ-20)=1/2 so θ-20=30 and from it θ=50°

  • @RealQinnMalloryu4
    @RealQinnMalloryu4 ชั่วโมงที่ผ่านมา

    {20°A+20°C+90°B}={130°ACB ➖ 180°}=50°ACB 2^25 2^5^5 2^2^3^2^3 1^1^1^2^3 2^3 (ACB ➖ 3ACB+2).

  • @professorrogeriocesar
    @professorrogeriocesar วันที่ผ่านมา

    Eu usei a Lei dos Senos. ;)

  • @nenetstree914
    @nenetstree914 วันที่ผ่านมา

    50 degree

  • @와우-m1y
    @와우-m1y วันที่ผ่านมา +1

    asnwer=60 isit

    • @와우-m1y
      @와우-m1y วันที่ผ่านมา +1

      asnwer=50 isit

  • @ABED4607
    @ABED4607 14 ชั่วโมงที่ผ่านมา

    Seconda volta fai qualcosa di dificile perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore perfavore ♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺😺🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌🤌❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️❣️🖕🎈🎈🎈🎈🎈🎈🎈👍👍🎈🎈🎈👍🎈💝🙁🙁💝🐆🦝🐯🐯🐱🐱🦬🦧🦄🦝🐱🐅