Whenever I need help on my computer science problem that has number-related problem, I turn to this brilliant guy for help. This is really vey helpful.
Eddie is one of my favorites math professors, it is amazing how he captures our attention and sharp curiosity with his enthusiasm about the subjects. Btw learn math by curiosity is always most enjoyable than learn it by obligation.
And as you count up, the composite numbers become more common (and primes less frequent) because there are more primes with which to build the composite numbers. That blew my mind!
Here is a 'fun fact' about the gap between primes: There will always have at least one prime between a number n and two times n. That's the Bertrand's postulate.
REPARTITION DES NOMBRES PREMIERS La répartition des nombres premiers est rationelle, logique et aisément explicable. Pour expliquer la répartition des nombres premiers, il faut faire le crible d'Eratosthène, uniquement pour les multiples de 2 et 3, ceci fait, analysons les nombres, qui ne sont divisibles ni par 2, ni par 3. Nous pouvons constater, qu'ils sont tous situé de part et d'autre d'un multiple de 6 et que 6 est un multiple commun à 2 et 3, car 2 X 3 = 6 Si on retranche ou rajoute 1 à 6 , nous obtenons un nombre, qui n'est divisible ni par 2, ni par 3. Donc, maintenant, nous savons, que les nombres premiers, se situes à multiple de 6 - 1 ou multiple de 6 + 1 Analysons les différents cas possibles: 6 - 1 ; 6 - 2 ; 6 - 3 ; 6 - 4 ; 6 - 5 ; 6 - 6 6 + 1 ; 6 + 2 ; 6 + 3 ; 6 + 4 ; 6 + 5 ; 6 + 6
Interprétation 6 - 2 ; 6 - 4 ; 6 - 6 ; 6 + 2 ; 6 + 4 ; 6 + 6 sont divisibles par 2 6 - 3 ; 6 - 6 ; 6 +3 ; 6 + 6 sont divisibles par 3 Les autres, qui ne sont divisibles ni par 2 , ni par 3 sont: 6 - 1 ; 6 - 5 ; 6 + 1 ; 6 + 5 6 - 1 et 6 + 5 sont identiques et valent 6 - 1 6 + 1 et 6 - 5 sont aussi identique et valent 6 + 1 Donc nous pouvons conclure que seul un 6n + ou - 1, peut diviser un autre 6n + ou - 1 non premier. Ceci explique pourquoi les nombres premiers vont en diminuant, car les multiples issus de la multiplication de deux 6n + ou - 1, prennent place à 6n + ou - 1.
I wonder how many 256-bit (32 byte, most significant byte not zero) prime numbers there could be. Oh, I just have to subtract that from that... approximately half a percent of IPv6 squared.
@@denisbbb218 exactly the opposite...this brings home the maximum bacon for those who understand it. the truth is that most people weren't taught how important such concepts can be and wallow in their lack of earning power
Man, just hear how engaged his class is! If I had a teacher like this when I was a kid, I wouldn't have to be watching this now in my life.
I hear you!!
no such thing as engagex or like or have or not, cepux,yuax etc, say, can say any nmw and any s perfect
Whenever I need help on my computer science problem that has number-related problem, I turn to this brilliant guy for help. This is really vey helpful.
Eddie is one of my favorites math professors, it is amazing how he captures our attention and sharp curiosity with his enthusiasm about the subjects. Btw learn math by curiosity is always most enjoyable than learn it by obligation.
Composite numbers are composed of unique products of prime numbers... this literally blew my mind.
And as you count up, the composite numbers become more common (and primes less frequent) because there are more primes with which to build the composite numbers. That blew my mind!
Can’t believe im watching this in grade 5😂😂
14:24 "this is what's interest-"
huge cliffhanger
Wow! I wish I had this person as a math teacher.
This person is great
Here is a 'fun fact' about the gap between primes:
There will always have at least one prime between a number n and two times n.
That's the Bertrand's postulate.
A quantidade aproximada de números primos! Entendi!
👏👏👏👏👏👏👏👏👏👏👏
Best maths teacher🤩
Haha
Bye
If agreed leave a like
Ha
Lop
Thanks Eddie - this helped me!
REPARTITION DES NOMBRES PREMIERS
La répartition des nombres premiers est rationelle, logique et aisément explicable.
Pour expliquer la répartition des nombres premiers, il faut faire le crible d'Eratosthène, uniquement pour les
multiples de 2 et 3, ceci fait, analysons les nombres, qui ne sont divisibles ni par 2, ni par 3.
Nous pouvons constater, qu'ils sont tous situé de part et d'autre d'un multiple de 6 et que 6
est un multiple commun à 2 et 3, car 2 X 3 = 6
Si on retranche ou rajoute 1 à 6 , nous obtenons un nombre, qui n'est divisible ni par 2, ni par 3.
Donc, maintenant, nous savons, que les nombres premiers, se situes à multiple de 6 - 1 ou multiple de 6 + 1
Analysons les différents cas possibles:
6 - 1 ; 6 - 2 ; 6 - 3 ; 6 - 4 ; 6 - 5 ; 6 - 6
6 + 1 ; 6 + 2 ; 6 + 3 ; 6 + 4 ; 6 + 5 ; 6 + 6
Interprétation
6 - 2 ; 6 - 4 ; 6 - 6 ; 6 + 2 ; 6 + 4 ; 6 + 6 sont divisibles par 2
6 - 3 ; 6 - 6 ; 6 +3 ; 6 + 6 sont divisibles par 3
Les autres, qui ne sont divisibles ni par 2 , ni par 3 sont:
6 - 1 ; 6 - 5 ; 6 + 1 ; 6 + 5
6 - 1 et 6 + 5 sont identiques et valent 6 - 1
6 + 1 et 6 - 5 sont aussi identique et valent 6 + 1
Donc nous pouvons conclure que seul un 6n + ou - 1, peut diviser un autre 6n + ou - 1 non premier.
Ceci explique pourquoi les nombres premiers vont en diminuant, car les multiples issus de la multiplication de
deux 6n + ou - 1, prennent place à 6n + ou - 1.
I saw you in a socratica video
I wonder how many 256-bit (32 byte, most significant byte not zero) prime numbers there could be.
Oh, I just have to subtract that from that... approximately half a percent of IPv6 squared.
he is the best man
This video always fails to load for me, while the others are OK :/
***** Thanks Eddie, I guess it was as I managed to watch it from another device. Keep up the good work! :)
Me too
they just learnt what logs r and now they r teaching cryptography
WOW!
How can this video have less than 10MM views in 2020?
Which makes me feel better about myself.
No one cares because it does not bring home the bacon. It’s like counting the number of invisible sheep.
@@denisbbb218 exactly the opposite...this brings home the maximum bacon for those who understand it.
the truth is that most people weren't taught how important such concepts can be and wallow in their lack of earning power
Ok