Deep Learning Tutorial - Part 2 | TensorFlow Object Detection | TensorFlow Tutorial | Simplilearn

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 พ.ย. 2024

ความคิดเห็น • 22

  • @SimplilearnOfficial
    @SimplilearnOfficial  2 หลายเดือนก่อน

    "🔥Caltech Post Graduate Program In AI And Machine Learning - www.simplilearn.com/artificial-intelligence-masters-program-training-course?EALSPZZagg&Comments&TH-cam
    🔥IITK - Professional Certificate Course in Generative AI and Machine Learning (India Only) - www.simplilearn.com/iitk-professional-certificate-course-ai-machine-learning?EALSPZZagg&Comments&TH-cam
    🔥Purdue - Post Graduate Program in AI and Machine Learning - www.simplilearn.com/pgp-ai-machine-learning-certification-training-course?EALSPZZagg&Comments&TH-cam
    🔥IITG - Professional Certificate Program in Generative AI and Machine Learning (India Only) - www.simplilearn.com/iitg-generative-ai-machine-learning-program?EALSPZZagg&Comments&TH-cam
    🔥Caltech - AI & Machine Learning Bootcamp (US Only) - www.simplilearn.com/ai-machine-learning-bootcamp?EALSPZZagg&Comments&TH-cam"

  • @SimplilearnOfficial
    @SimplilearnOfficial  4 ปีที่แล้ว

    Machine Learning is the Future and yours can begin today. Comment below with you email to get our latest Machine Learning Career Guide. Let your journey begin

  • @niharikazirvi8448
    @niharikazirvi8448 6 ปีที่แล้ว +1

    How can I use tensorflow for image detectionfor training model in case the datsets I provide is of X rays of n no. of patients with the a particular disease. I want to build a model in ML in which if I give a x ray for detecting the stage of that disease through the the the training dataset which have different classes and attributes.then what libraries or models should I use.Help me please.

    • @SimplilearnOfficial
      @SimplilearnOfficial  6 ปีที่แล้ว

      Hi Niharika, thanks for checking out our tutorial. Since you are taking of working with X-ray images, it will always be recommended to implement it using Convolution Neural Networks. CNN's are widely used for image detection. TensorFlow library has all the necessary parameters and functions to implement a CNN model. The only burden is to have large volumes of good visual X-ray images. Hope that helps!

  • @AutoCarNation
    @AutoCarNation 5 ปีที่แล้ว

    Thank you for your helpful video. Please I have a question: do you a tutorial on images' reconstruction (2D, 3D, ...) with tensorflow? Thanks

    • @SimplilearnOfficial
      @SimplilearnOfficial  5 ปีที่แล้ว +1

      Sorry, we do not have a video on that. However, we will definitely share your suggestion to our content team

    • @AutoCarNation
      @AutoCarNation 5 ปีที่แล้ว

      @@SimplilearnOfficial Thank you much! I am impatiently waiting for an outcome :)

  • @adityaagarwal7884
    @adityaagarwal7884 5 ปีที่แล้ว

    can this same model be used for line segmentation

    • @SimplilearnOfficial
      @SimplilearnOfficial  4 ปีที่แล้ว

      "Hi Aditya,
      This tensorflow library can be used for line segmentation. But its API is not suitable for line segmentation."

  • @Gopikha6
    @Gopikha6 6 ปีที่แล้ว +1

    IS IT possible to detect colors in skin image using Deep learning method??

    • @SimplilearnOfficial
      @SimplilearnOfficial  6 ปีที่แล้ว

      Yes, it is possible to detect the color of human skin using color skin images. A Gaussian model or a Convolution Neural Network can be used for this purpose.

  • @MobileMonk
    @MobileMonk 6 ปีที่แล้ว

    Are there any ready made software for images detection instead of coding and stuff?

    • @SimplilearnOfficial
      @SimplilearnOfficial  6 ปีที่แล้ว

      Of course, there are lots in the market. Some of the top Image Detection softwares are Google Image Recognition, Amazon Rekognition, Clarifai, Ditto labs and IBM Image Detection.

  • @SimplilearnOfficial
    @SimplilearnOfficial  6 ปีที่แล้ว

    Do you have any questions on this topic? Please share your feedback in the comment section below and we'll have our experts answer it for you.
    Thanks for watching the video. Cheers!