An Interesting Homemade Equation | Problem 459

แชร์
ฝัง
  • เผยแพร่เมื่อ 22 ธ.ค. 2024

ความคิดเห็น • 10

  • @SweetSorrow777
    @SweetSorrow777 8 วันที่ผ่านมา +3

    Yes, 2nd method all the way. Much simpler to write z as r*(e^i* theta) from the beginning.😊

  • @scottleung9587
    @scottleung9587 8 วันที่ผ่านมา

    Cool!

  • @FRODOGOOFBALL
    @FRODOGOOFBALL 8 วันที่ผ่านมา +2

    one thing that went wrong in the first method: at 6:30 you said r^2 = 2, but then at 7:00 you said r^2 = 4

    • @mcwulf25
      @mcwulf25 8 วันที่ผ่านมา +1

      Fell at the last hurdle!

    • @aplusbi
      @aplusbi  8 วันที่ผ่านมา +2

      uh-oh! 😁

  • @ssalmero
    @ssalmero 8 วันที่ผ่านมา +1

    As 2i=2.e^(pi/2+2npi), the generic argument is theta= (pi/2).(2n+1/2)

  • @dixonblog
    @dixonblog 8 วันที่ผ่านมา +2

    z = -(1+i) is also a solution

    • @mcwulf25
      @mcwulf25 8 วันที่ผ่านมา +1

      Because we only considered arg(2i) = pi/2.
      If we did this properly we have arg(2i) = pi/2 + 2n.pi
      So after dividing by 2 to find arg(z) we have pi/4 and 5pi/4. (And 9pi/4 etc but these just correspond with the first two).
      An argument of 5pi/4 is in q3 and a and b are negative, as you state.

  • @mcwulf25
    @mcwulf25 8 วันที่ผ่านมา +1

    Method 3
    Multiply both sides by complex conjugate:
    (z.z*)^(|z|^2) = 2i.(-2i) = 4
    (|z|^2)^(|z|^2) = 4 = 2^2
    So |z|^2 = 2
    |z| = sqrt(2)
    z = |z|^2.e^it = 2e^i.pi/2
    e^2it = sqrt(2)e^i.pi/2
    e^2it = e^i.pi/2
    2it = i.pi/2
    t = pi/4
    z = sqrt(2) e^i.pi/4 = 1 + i

  • @Don-Ensley
    @Don-Ensley 7 วันที่ผ่านมา

    problem
    z ᑊᶻᑊ^² = 2 i
    Let
    z = √(a² + b²) e ⁱ ⁽ᵗᵃⁿ⁻¹⁽ᵇᐟᵃ⁾⁺ ᴷ ⷫ ⁾
    , where K is an integer. The period of tangent is π.
    We have
    |z|² = (a² + b²)
    2 i = eˡⁿ² ⁺ ⁱ ⷫ ⁽¹ᐟ²⁺²ᴺ⁾
    , where N is an integer.
    Originally the equation is
    z ᑊᶻᑊ^² = 2 i
    Take natural logs on both sides.
    (a² + b²) { ½ ln(a² + b²) + i [tan⁻¹(b/a)+Kπ] } =
    ln 2 + i π (1/2+2N)
    Equate Real parts:
    (a² + b²) ½ ln(a² + b²) = ln 2
    (a² + b²) ln(a² + b²) = 2 ln 2
    Equate Imaginary parts:
    (a² + b²)[ tan⁻¹(b/a)+Kπ] = π(1/2+2N)
    From
    (a² + b²) ln(a² + b²) = 2 ln 2
    a² + b² = 2
    From
    (a² + b²)[ tan⁻¹(b/a)+Kπ] = π(1/2+2N)
    We show by tangent sums formulas that the result is the same as following the principle branch where N = K = 0.
    2 [ tan⁻¹(b/a)+Kπ] = π(1/2+2N)
    tan⁻¹(b/a)+Kπ = π(1/2+2N)/2
    tan⁻¹(b/a) = π(1/2+2N)/2-Kπ
    b/a = tan [(π/4+πN) -Kπ]
    = [ tan(π/4+πN)-tan(Kπ) ]/
    [ 1 + tan(π/4+πN) • tan (Kπ) ]
    tan(π/4+πN) = [tan(π/4)+ tan(πN)]/
    [ 1 - tan(π/4)•tan(πN) ]
    = [1 + 0] / [ 1 - 0 ]
    = 1
    b/a = [ 1-tan(Kπ) ]/[ 1 + 1• tan (Kπ) ]
    b/a = [ 1-0 ]/[ 1 + 1•0 ]
    b/a = 1
    a = b
    2 a² = 2
    a = ± 1
    b = ± 1
    z = 1 + i, -1-i
    answer
    z ∈ { -1 - i, 1 + i }