IOMP Webinar: Radiogenomics/Radiomics-Guided Personalized Radiation Therapy

แชร์
ฝัง
  • เผยแพร่เมื่อ 29 ม.ค. 2025
  • Radiogenomics/Radiomics-Guided Personalized Radiation Therapy:
    Current Status, Challenges, and Opportunities
    Friday, 12th May 2023 at 12 pm GMT; Duration 1 hour
    Moderator: Prof Arun Chougule
    Speaker: Dr. V. Subramani
    Dr. V. Subramani, PhD is currently working as Assistant Professor of Radiation Oncology (Medical Physics) and Heading Medical Physics in the Department of Radiation Oncology at All India Institute of Medical Sciences, New Delhi. He is having more than 26 years of experience in in radiation oncology medical physics. He has publication of around 50 scientific research articles as author and co-authors in the field of radiation oncology. Also He has delivered around 70 invited guest lectures, chaired several scientific sessions and participated in the debates and panel discussions in the national and international professional organization’s annual and periodic scientific meetings for the last ten years in the field of advanced radiotherapy and medical physics. He is currently national secretary of Association of Medical Physicists of India (AMPI), IOMP Education and Training Committee member and also serves as Chief Editor of Asia-Oceania Federations of Organization for Medical Physics Newsletter.
    Abstract:
    The success of a cancer treatment depends on the ability to deliver the right treatment to right patient to a right dose at right time, which is an ultimate goal of precision medicine or precision oncology. However, currently patients undergoing radiotherapy are treated using uniform dose constraints specific to the tumor and surrounding normal tissues. This population based one-size-fit-all approach results in significant adverse effects and suboptimal tumor control. Another concern with current approach is that two patients with nearly identical dose distributions can have substantially different acute and chronic morbidities leading to poor quality of life. Therefore, there is a need to develop an approach to overcome this limitation of current standard of care in oncology. Due to recent advances in biological and quantitive imaging, image processing analysis, computational power, cancer biology, biotechnology and genomics, there are tremendous growths and large amount of data is available for each individual patient.
    The radiogenomics is an emerging field in precision radiation oncology. “Radiogenomics” has two meanings: “the study of genetic variation associated with response to radiation (Radiation Genomics) and “the correlation between cancer imaging features and gene expression (Imaging Genomics). Radiogenomics is a combination of both radiomics and genomics biomarkers, which is useful in guiding and personalizing treatment prescription and adaptation when changes occurring during the course of therapy. This is termed as Radiogenomics-Guided personalized radiation therapy. Both radiomics and radiogenomics biomarkers can be used to evaluate disease characteristics or correlate with relevant clinical outcome such as patient prognosis and treatment response. The common goal of discovering useful diagnostics, prognostics or predictive biomarkers to improve clinical decision making and ultimately enable the practice of precision and personalized medicine.
    The presentation will address about the medical physics aspects of quantitative imaging biomarker, radiomics/radiogenomics model development, radiomics-guided radiotherapy using radiomics-target volume, radiomics-knowledge based treatment and also gnomically-guided radiotherapy including genomic-adjusted radiation dose and radiation sensitivity signature and models for personalized radiotherapy.

ความคิดเห็น •