Prove arg(z₁z₂) = arg(z₁+z₂)² (1 of 2: Preliminary thoughts)

แชร์
ฝัง
  • เผยแพร่เมื่อ 23 ธ.ค. 2024

ความคิดเห็น • 13

  • @neri1125
    @neri1125 3 ปีที่แล้ว +5

    Using properties of complex numbers and arguments, proving that statement is the same as proving;
    arg(z1z2) - arg(z1+z2)^2 = 0
    or just that
    arg(z1z2 / (z1+z2)^2) = 0
    whereby now the task is proving that z1z2 / (z1+z2)^2 is a positive real number as long as |z1|=|z2|.
    Let z1=re^iA and z2=re^iB then
    z1z2 / (z1+z2)^2 = e^i(A+B) / [e^i2A + 2e^i(A+B) + e^i2B] = 1 / [ e^i(A-B) + e^-i(A-B) + 2 ] = 1 / [ 2cos(A-B) + 2]
    and this is always a positive quantity since denominator is bounded by 0 and 4.

    • @JohnSmith-rf1tx
      @JohnSmith-rf1tx 3 ปีที่แล้ว +1

      Not that it impacts your point, but at the end I believe it should be 1 / [ 2cos(A-B) + 2].

    • @neri1125
      @neri1125 3 ปีที่แล้ว +1

      @@JohnSmith-rf1tx good spot thanks :)

  • @imfhr
    @imfhr 3 ปีที่แล้ว +1

    Your techniques are stunning. The way you instruct must inspire educators to elevate their strategy.

  • @GooogleGoglee
    @GooogleGoglee 3 ปีที่แล้ว +6

    At 6:40 when expand the square should not be: 2r^2(e^i(a+b)) instead than r^2(e^i(a+b)) ?

    • @juauke
      @juauke 3 ปีที่แล้ว +1

      Yeah it's a typo I guess

    • @jesusthroughmary
      @jesusthroughmary 3 ปีที่แล้ว

      This is what I came here to say.

  • @drjohnsmith5282
    @drjohnsmith5282 3 ปีที่แล้ว +3

    Exercises vs Problems - nice comparison. Every single Real Analysis question is a problem then (in both senses of the word) 🤣🤣

  • @mastershifuVJ
    @mastershifuVJ 3 ปีที่แล้ว +1

    Are you using obs studio for putting your vdo along with the slides on screen?

  • @Gyan.GangaTV
    @Gyan.GangaTV 3 ปีที่แล้ว +1

    Nice

  • @JohnSmith-rf1tx
    @JohnSmith-rf1tx 3 ปีที่แล้ว

    This problem is broken. The statement isn't true and therefore can't be proved. Disproving is easy with a simple counterexample:
    Consider z1 = 1+0i and z2 = -1+0i
    |z1|= sqrt (1^2 + 0^2)
    = sqrt (1)
    = 1
    |z2|= sqrt [(-1)^2 + 0^2]
    = sqrt (1)
    = 1.
    Therefore |z1|=|z2|, so z1 & z2 satisfy the only given condition.
    LHS= arg [1*(-1)]
    = arg (-1)
    = pi.
    RHS= arg [(1+0i + (-1+0i) )^2]
    = arg [(1-1)^2]
    = arg (0^2)
    = arg (0), which is undefined.
    Therefore LHS != RHS QED.
    In order for the question to be okay, it needs a second condition that z1+z2 != 0.