an arithmetic differential equation.

แชร์
ฝัง
  • เผยแพร่เมื่อ 21 พ.ย. 2024

ความคิดเห็น • 63

  • @zygoloid
    @zygoloid 11 หลายเดือนก่อน +37

    I think this can be done a bit more simply: note (eg, by induction) that f(n) = n * sum (a_j / p_j). f(n) = n => sum (a_j / p_n) = 1, and the only way that can happen is if we have only one prime and a_1 = p_1, so n =p^p for some p.

    • @samueldeandrade8535
      @samueldeandrade8535 11 หลายเดือนก่อน +1

      Yep. That's exactly how I did. We should meet and start making math videos. Recently I watched a teacher using 4 videos to prove a Pithagorean relation associated with 4 consecutive Fibonacci numbers. I demonstrated it in one comment. Man, his choice of variables was very bad. Not clever at all.

    • @erikhansbo5834
      @erikhansbo5834 11 หลายเดือนก่อน +1

      Could there not be several terms all adding up to 1 together? a_j / p_j could be a fraction, no?

    • @samueldeandrade8535
      @samueldeandrade8535 11 หลายเดือนก่อน +2

      @@erikhansbo5834 let P = prod p_j, then
      sum a_j/p_j = 1
      => sum a_j P/p_j = P
      Each p_j must divide all terms. So it must divide a_j P/p_j, but doesn't divide P/p_j. So a_j = p_j k_j, with k_j nonnegative integer.
      Using that in the expression of the sum, we get
      sum k_j = 1
      The only solutions is all k's equal 0 and k_j=1, for some j.

    • @zygoloid
      @zygoloid 11 หลายเดือนก่อน +2

      @@erikhansbo5834 If a/b and c/d are in their lowest form and b and d are coprime, then the denominator of a/b + c/d is bd [*]. Because the p_i are all coprime, the sum is only an integer if all the terms are integers -- otherwise the denominator must be greater than one.
      [*]: If not, then p | bd and p | ad + bc. WLOG p | b. Then p | ad, and because b and d are coprime, p | a, so a/b was not in lowest form.

    • @FractalMannequin
      @FractalMannequin 11 หลายเดือนก่อน +4

      @@samueldeandrade8535 So if you actually add every step to the proof (namely, that if the sum over a_i/p_i's is 1, then k=1 and a_i = p_i), you end up with about the same content as in the video. I do find your approach much more elegant, but the main difference is just giving mid results for granted.

  • @NathanSimonGottemer
    @NathanSimonGottemer 11 หลายเดือนก่อน +4

    Note that if you extend that power rule to p^p you get p*p^(p-1) or just p^p again - immediately when you wrote n’=n I started to look for the equivalent of exp(x) and it took me only a couple guesses to come to that result.

    • @josephabrahamson297
      @josephabrahamson297 11 หลายเดือนก่อน +2

      Yeah, in a test environment I suspect guessing that answer and verifying is the dominant strategy. Although this proof is pretty.

  • @MrGyulaBacsi
    @MrGyulaBacsi 11 หลายเดือนก่อน +3

    Mike! You might have probably heard this before: I suppose these videos are made such that you've already solved the problem and you present it to us. But for me it'd be really interesting to see you actually solving the problem from scratch. To see your way of thinking that leads to the solution and how long does it actually take to solve them. Best regards! (And of course: awesome video once again :) )

  • @DoktorApe
    @DoktorApe 11 หลายเดือนก่อน +15

    Isn’t it simpler to just cancel rad(n) at 16:55 and get sum{a_j/p_j} = 1 or am I missing something

    • @two697
      @two697 11 หลายเดือนก่อน +4

      Yes that's much faster

    • @Minskeeeee
      @Minskeeeee 11 หลายเดือนก่อน +3

      how does sum{a_j/p_j} = 1 imply that there must be a single a=p pair? Would the logic of proving that be easier than Michael's solution?

    • @gerardomalazdrewicz7514
      @gerardomalazdrewicz7514 11 หลายเดือนก่อน

      Dr. Penn makes that argument at th-cam.com/video/4oAda4DtEo4/w-d-xo.html

    • @samueldeandrade8535
      @samueldeandrade8535 11 หลายเดือนก่อน +2

      ​@@Minskeeeee actually, it is pretty simple:
      let P = prod p_j, then
      sum a_j/p_j = 1
      => sum a_j P/p_j = P
      Each p_j must divide all terms. So it must divide a_j P/p_j, but doesn't divide P/p_j. So a_j = p_j k_j, with k_j nonnegative integer.
      Using that in the expression of the sum, we get
      sum k_j = 1
      The only solutions is all k's equal 0 and k_j=1, for some j.

    • @Minskeeeee
      @Minskeeeee 11 หลายเดือนก่อน +4

      @@samueldeandrade8535 is that not just Michael's method? by multiplying by prod(p_j), it seems like you're just reversing that cancelation that the comment refers to
      why cancel that term just to bring it back in the proof? seems like it's not actually easier

  • @PRIYANSH_SUTHAR
    @PRIYANSH_SUTHAR 11 หลายเดือนก่อน +2

    To make it look more beautiful, we could also write the product of all the primes with their powers reduced by 1 in the general formula with a product series notation. I later got why he didn't do like that.

  • @martincohen8991
    @martincohen8991 11 หลายเดือนก่อน +1

    I get that if f(n)=n there can be only one prime p dividing n and we must have n=p^p so the answer is 5^5=3125.

  • @Alan-zf2tt
    @Alan-zf2tt 11 หลายเดือนก่อน +1

    Ahhh ... the beauty of math.

  • @goodplacetostop2973
    @goodplacetostop2973 11 หลายเดือนก่อน +7

    16:20

  • @АндрейВоинков-е9п
    @АндрейВоинков-е9п 11 หลายเดือนก่อน

    Why use cap notation, you could just use power 0 for this term

  • @praharmitra
    @praharmitra 11 หลายเดือนก่อน +3

    Is this an old video? I remember seeing this

    • @sacredwanderer5213
      @sacredwanderer5213 11 หลายเดือนก่อน +5

      Nah, u are remembering an older video he did on the arithmetic derivative.

  • @gamingbutnotreally6077
    @gamingbutnotreally6077 11 หลายเดือนก่อน

    Really loved this problem!

  • @yulflip
    @yulflip 11 หลายเดือนก่อน

    How would one show that this function is well defined?

  • @zruda2
    @zruda2 11 หลายเดือนก่อน +1

    Is it possible to just have \sum_{j=1}^{k} a_j * rad(n) / p_j = rad(n) * \sum{a_j / p_j} which leads to \sum{a_j / p_j} = 1? I think I am missing something but don't want to think about it too much 🙂

    • @martincohen8991
      @martincohen8991 11 หลายเดือนก่อน

      I got that also. From this we can deduce that a_j >= p_j so this implies that there is only one prime factor and a_j=p_j.

  • @omgopet
    @omgopet 11 หลายเดือนก่อน +8

    1. Just wondering if I'm correct on this: you can extend the domain of f to N0 by setting f(1)=0... or did I miss something?
    2. The divisibility arguments seem unnecessarily complicated. We can simply note that rad(n) is a constant with respect to the summation index j and take it out of the sum. Then we cancel all of the products and get 1=sum(a_j/p_j), which leads to k=1, a=p as the only solution. Or am I making an assumption I'm not supposed to?

    • @lorenzosaudito
      @lorenzosaudito 11 หลายเดือนก่อน +1

      This function can be extended to all the rationals, to some irrationals, and even to some complex (non real) numbers :)

    • @henryhowe769
      @henryhowe769 11 หลายเดือนก่อน +4

      I'm not exactly sure how you are avoiding the divisibility argument there? By what logic are you justifying that the only way the sum can equal 1 is k=1 a=p, without an essentially identical divisibility argument?

  • @keniosilva222
    @keniosilva222 11 หลายเดือนก่อน +1

    Exists a function such that f(p^q)=p^f(q) for all p, q primes?

    • @Relrax
      @Relrax 11 หลายเดือนก่อน +3

      the identity works

    • @keniosilva222
      @keniosilva222 11 หลายเดือนก่อน

      That’s all?

    • @ribozyme2899
      @ribozyme2899 11 หลายเดือนก่อน

      The question as you wrote it is incredibly open - yes, you can literally just define f(p) for all primes p, that gets you f(p^q), and then you can choose completely arbitrary values f(n) for any n that is not a power of a prime.
      It'd be more interesting if you wanted the function to have further required properties.

  • @neonlines1156
    @neonlines1156 9 หลายเดือนก่อน

    In this video:
    How to solve an arithmetic differential equation ❌
    The product rule is called the Leibniz Rule✔

  • @bmschech
    @bmschech 11 หลายเดือนก่อน

    by the definition of f, f(1 x 1)=1 x f(1) + 1 x f(1) => f(1)= 2 x f(1), which seems to be a problem. Is it?

    • @Notthatkindofdr
      @Notthatkindofdr 11 หลายเดือนก่อน +1

      No, because f(1)=0 satisfies that equation.

  • @jasonroberts2010
    @jasonroberts2010 11 หลายเดือนก่อน +1

    f(p) = f(1p) = 1f(p) + pf(1) = 1 implies f(1) = 0 right?

  • @PawelS_77
    @PawelS_77 11 หลายเดือนก่อน +2

    Can't we just divide by P_j instead of using the "hat"?

    • @CM63_France
      @CM63_France 11 หลายเดือนก่อน

      Same suggestion

  • @juandavidrodriguezcastillo9190
    @juandavidrodriguezcastillo9190 11 หลายเดือนก่อน

    Cest magnifique

  • @samueldevulder
    @samueldevulder 11 หลายเดือนก่อน

    Interesting :)

  • @carvalhobarberino7008
    @carvalhobarberino7008 8 หลายเดือนก่อน

    How can I get more information about this function? f(x*y)=x*f(y)+y*f(x)
    "Bolivia TST 2021" isn't enough for search more about this

  • @trueriver1950
    @trueriver1950 11 หลายเดือนก่อน +1

    Am i missing something?
    The question as set only gives the result for primes, not for the general case of integers... 😮
    Later: aha! he's deriving the result for composites 😊

  • @MarcusCactus
    @MarcusCactus 11 หลายเดือนก่อน

    arith-EMETIC? Was it intended?

  • @Double_U_tau_Phi
    @Double_U_tau_Phi 11 หลายเดือนก่อน +4

    Is this first?