Mollifiers

แชร์
ฝัง
  • เผยแพร่เมื่อ 28 ธ.ค. 2024

ความคิดเห็น • 51

  • @RC32Smiths01
    @RC32Smiths01 3 ปีที่แล้ว +9

    Turning a sharper function into something smooth, never really thought about that! Thanks!

  • @thedoublehelix5661
    @thedoublehelix5661 3 ปีที่แล้ว +22

    0:12 ...so you're saying the function f is kinky?

    • @joshhfrmx
      @joshhfrmx 3 ปีที่แล้ว +1

      LOL

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +9

      I was so close to saying that LOL

  • @FT029
    @FT029 3 ปีที่แล้ว +5

    In an analysis class I took, mollifiers were used to prove smooth partition of unity, which was used to prove the change of variables theorem. Lots of applications!
    The harmonic function proof went a little over my head but the parts I did understand were beautiful!

  • @erictao8396
    @erictao8396 2 ปีที่แล้ว +1

    I was reading Evans's PDE book and it started talking about mollifiers which I'd never heard of before... glad I found this video!

  • @manolisjam3322
    @manolisjam3322 3 ปีที่แล้ว +1

    The hardest part of this course except the really clever calculations. I understant the proofs line by line after your explanations but my main problem is i literally would not have a chance of thinking them by myself.Like the intuition for this course is ??? Everything is like magic. I wanna show differentiability ohh look ill introduce a new product and then a certain function and then prove my function is equal to this new product and this new function i came up with and this product is smooth so is my initial function. Like damn all the course doesnt feel like it has a "natural" way of thinking. Feels like i have to find ingenious ways to make things work with really weird machinery.Im really greatfull for your explanations tho!!!!

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +2

      You’ll get used to it, then things won’t look weird any more and everything becomes more natural

    • @manolisjam3322
      @manolisjam3322 3 ปีที่แล้ว

      @@drpeyam You sir really helpin with that. !!!! Greatfull .

  • @haidertopg
    @haidertopg 3 ปีที่แล้ว +14

    Title these days be going Real Smooth!

  • @Idtelos
    @Idtelos 3 ปีที่แล้ว +6

    Mollifiers are Smooooooth operators....

  • @Handelsbilanzdefizit
    @Handelsbilanzdefizit 3 ปีที่แล้ว +17

    while True:
    print("great!")

    • @rjbeatz
      @rjbeatz 3 ปีที่แล้ว +2

      Did it stop yet?😂

    • @Handelsbilanzdefizit
      @Handelsbilanzdefizit 3 ปีที่แล้ว +2

      @@rjbeatz
      "Ctrl+C"
      Now, it stopped.

  • @adrianoseresi3525
    @adrianoseresi3525 3 ปีที่แล้ว +1

    cha cha real smooth

  • @61rmd1
    @61rmd1 3 ปีที่แล้ว

    Thanks a lot...you make hard topics look much easier

  • @aurelienlouesdon9880
    @aurelienlouesdon9880 3 ปีที่แล้ว +3

    Hi, when we integrate over the boundarie at 12:28 it should be r instead of epsilon ?

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +1

      Indeed, that should be r

  • @factsheet4930
    @factsheet4930 3 ปีที่แล้ว +1

    I never knew this actually, we only proved in my analysis class that functions in C0 are dense in Lp space, and the teacher just told us, btw also C infinity functions are dense but we won't prove it.
    So this video really filled a hole in my knowledge 🥰

  • @dr_spacepirate
    @dr_spacepirate 3 ปีที่แล้ว

    Loved your channel! Subscribed!!

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว

      Thank you!!!

  • @_Jude-St.-Francis_
    @_Jude-St.-Francis_ 3 ปีที่แล้ว +4

    Interesting!

  • @mudkip_btw
    @mudkip_btw 3 ปีที่แล้ว +2

    a little correction about "seeing atoms": you only see the light scattered/emitted from those atoms. This is already a huge smoothing process, as visible wavelengths are much longer than the size of a typical atom. Sorry I had to play annoying physicist lol :) interesting video! Now I know what a mollifier is and you explained it really well.

    • @mudkip_btw
      @mudkip_btw 3 ปีที่แล้ว +1

      The bit on Laplace's equation is really surprising. I did not expect you could convince me that was true. Thanks a lot! Learned something new about my favourite differential operator :-)

  • @programmingstudios2115
    @programmingstudios2115 3 ปีที่แล้ว

    Sir, you should get atleast 100k subs

  • @dyer308
    @dyer308 3 ปีที่แล้ว +1

    I wish this video existed when I took PDES last year

  • @abdelghanielgargati2614
    @abdelghanielgargati2614 3 ปีที่แล้ว +1

    Please
    What is the name of the app you are using.

  • @bprpfast
    @bprpfast 3 ปีที่แล้ว +3

    this is why blackpenredpen doesn't have a math phd

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +2

      LOL but u have a PhD in integrals haha

    • @jeemain9071
      @jeemain9071 3 ปีที่แล้ว

      Again...😶😶

  • @dgrandlapinblanc
    @dgrandlapinblanc 2 ปีที่แล้ว

    Ok. Thanks.

  • @anthonyymm511
    @anthonyymm511 3 ปีที่แล้ว +2

    Peyam, why is that in math a derivation that would be called "formal" would probably be described in lay english as "informal" ? I've always wondered this.

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +2

      No idea at all, it’s so weird

    • @stefanalecu9532
      @stefanalecu9532 3 ปีที่แล้ว

      Probably because when you're formally writing it you have to write it carefully, but if you're explaining it in a hand-wavey way, it's informal

    • @cg5452
      @cg5452 3 ปีที่แล้ว

      From my non-academic understanding, formal math can be written completely in symbolic logic. Thus all the theorems/proofs can be verified via computer. Where as informal math sacrifices some rigour for a more intuitive approach.

  • @dominicellis1867
    @dominicellis1867 3 ปีที่แล้ว

    This is insane I wrote a tune called Mollifaction its good to know its infinite

  • @perappelgren948
    @perappelgren948 3 ปีที่แล้ว +1

    That "aider" of yours, the m-ollifier, is that a lowercase η? Anyhow, the mollifier indeed _is_ an "aider" as it provides instantaneous analyticity as well as the expected convergence properties. Great video, as always. 👍

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +1

      Yes, eta!

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +1

      Hahahahaha I get it now 😂

  • @quanjano382
    @quanjano382 3 ปีที่แล้ว

    is |x|^2 not equivalent to x^2? why is the absolute value needed in the eta function?

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +4

      In R^n x^2 is undefined

  • @bjoernschermbach3957
    @bjoernschermbach3957 3 ปีที่แล้ว +1

    You say mollifier, we say "Glättungskern" 😄

    • @drpeyam
      @drpeyam  3 ปีที่แล้ว +1

      I love this!!!!

  • @gideonmaxmerling204
    @gideonmaxmerling204 3 ปีที่แล้ว

    in m^ε(x), what is N?

    • @MostlyCaffeine
      @MostlyCaffeine 3 ปีที่แล้ว

      f is given as a function on R^N

  • @earthbjornnahkaimurrao9542
    @earthbjornnahkaimurrao9542 3 ปีที่แล้ว +1

    low pass filter, cool

  • @davidbrisbane7206
    @davidbrisbane7206 3 ปีที่แล้ว +2

    A kinky function. My kind of function.

  • @purim_sakamoto
    @purim_sakamoto 3 ปีที่แล้ว

    ちょっとこれは難し過ぎた
    2回生くらいでやる事なんだろね

  • @gabrielalem123
    @gabrielalem123 3 ปีที่แล้ว

    @Dr Peyam Please Dr. Check your gmail inbox. I sent you a pdf file with the demo I did.

  • @insouciantFox
    @insouciantFox 3 ปีที่แล้ว

    The only instance where abuse is nice.