this is a "power series" equation!

แชร์
ฝัง
  • เผยแพร่เมื่อ 15 พ.ย. 2024

ความคิดเห็น • 174

  • @drpeyam
    @drpeyam 4 ปีที่แล้ว +47

    Oh my cosh! Also, cute bunny 🐰

    • @green0563
      @green0563 4 ปีที่แล้ว +4

      Hey, nice to see you here! Love your videos.

    • @aashsyed1277
      @aashsyed1277 3 ปีที่แล้ว +1

      @@green0563 yes!!!!!!!

  • @immanuelsuleiman7550
    @immanuelsuleiman7550 4 ปีที่แล้ว +15

    I started watching your channel because I needed help with the differential equations homework but I really come to love watching you break down math problems
    Your enthusiasm is infectious
    You are an excellent teacher

  • @jjoster
    @jjoster 4 ปีที่แล้ว +54

    Non-real way if I have to choose, but I like both.

  • @Sg190th
    @Sg190th 4 ปีที่แล้ว +35

    I like both methods. If I recall, the power series regarding sinx and cosx is a good way to "prove" Euler's identity right?
    Edit: never mind, I found an old video you made haha

  • @viktorschreiner3109
    @viktorschreiner3109 4 ปีที่แล้ว +146

    Day 100 after pandemic outbreak: talking to a toy bunny

    • @zat5176
      @zat5176 4 ปีที่แล้ว +3

      Right what I was thinking

  • @ffggddss
    @ffggddss 4 ปีที่แล้ว +4

    First take on this - that looks like a Taylor Series of some trig function.
    For cos(x), the signs would alternate, and x would have only even powers.
    So this series is cos(i√x) = cosh(√x)
    And since cosh y ≥ 1 for all real y, the solutions (y) are all complex, non-real.
    But x can be real and negative, while y is non-real. In fact, we get
    cos(i√x) = 0; i√x = (k+½)π, all integers, k
    x = -(k+½)²π², all integers, k
    There are infinitely many solutions; the largest is when k=0,
    x = -¼π²
    Fred

  • @Vampianist3
    @Vampianist3 4 ปีที่แล้ว +38

    That bunny is so freaking smart...instant solve with only a glimpse at the question. I mean wth...

    • @Apollorion
      @Apollorion 4 ปีที่แล้ว +1

      Who'd expect Miffy to be such a mathematical genious?

    • @rogerkearns8094
      @rogerkearns8094 4 ปีที่แล้ว +3

      They're best at multiplication, though.

    • @Joe-bb4yi
      @Joe-bb4yi 4 ปีที่แล้ว

      Ramanujan 2

  • @applimu7992
    @applimu7992 4 ปีที่แล้ว +25

    just noticed 3blue1brown is a patreon thats pretty cool

  • @blackpenredpen
    @blackpenredpen  4 ปีที่แล้ว +12

    Any complex solutions?

    • @Mryeo5354
      @Mryeo5354 4 ปีที่แล้ว +5

      Technically real solutions are complex so yes ;)

    • @valeriobertoncello1809
      @valeriobertoncello1809 4 ปีที่แล้ว +1

      idk, seems a pretty complex question to answer...

    • @aniketsen6845
      @aniketsen6845 4 ปีที่แล้ว

      Boss, i have a problem for you to solve ...how can i send it to you

    • @valeriobertoncello1809
      @valeriobertoncello1809 4 ปีที่แล้ว

      @Diego Marra nice

    • @blackpenredpen
      @blackpenredpen  4 ปีที่แล้ว

      Diego Marra that’s amazing!!!

  • @shubhronildutta1563
    @shubhronildutta1563 4 ปีที่แล้ว +7

    Hey Steve Sir,
    Here is a small challenge for you (actually pretty big),
    Can you make a video on the number of permutations of a Rubik's cube.?
    This was a great video by the way...although I understood only the real part as I don't know hyperbolic functions 😅

  • @inesantoniosanchezgutierre664
    @inesantoniosanchezgutierre664 4 ปีที่แล้ว +1

    Oh man! So simple equation for you took me to Riemann hypothesis. Very good job! I like the way you enjoy maths. Go ahead you´re a really encouraging example for new generations.

  • @soumyadippaik2615
    @soumyadippaik2615 4 ปีที่แล้ว +6

    Hi blackpenredpen I am a big fan of yours and obviously maths . I am a student of class 11 and I made a problem.. If y is a solution to the equation y+y'+y''+.... +y''( n dashes {nth derivative}) =e^x.then prove that y equals the (n+1) th derivative of itself. Love from India...

    • @green0563
      @green0563 4 ปีที่แล้ว

      Done. Take the derivative of the original equation, and subtract the new one from the original, everything else cancels and you get y - (n+1)th derivative of y = 0.

    • @soumyadippaik2615
      @soumyadippaik2615 4 ปีที่แล้ว

      Can you find n solutions for y.

    • @angelmendez-rivera351
      @angelmendez-rivera351 4 ปีที่แล้ว

      Doli Paik Yes. Let [D^n]y(t) denote the nth derivative of y(t). To solve [D^(n + 1)]y(t) = Dy(t), integrate over the interval (0, x), resulting in [D^n]y(x) = y(x) + y(0) - [D^n]y(0). Letting x = 0 implies that y(0) = [D^n]y(0), simplifying the equation to simply [D^n]y(t) = y(t). Therefore, y(t) is the sum from m = 0 to m = n -1 of the terms of the sequence a(n, t) = C(m)·e^[ω(n)^m·t], where ω(n) = e^(2πi/n).

    • @anas8183
      @anas8183 4 ปีที่แล้ว

      I smell jee here

  • @_DD_15
    @_DD_15 4 ปีที่แล้ว

    Instantly thought of the complex way because I know the expansion of cosh, but it's very smart the way you solved it on the left side. Would have never thought of it

  • @drpkmath12345
    @drpkmath12345 4 ปีที่แล้ว +31

    Hey man. That question was what I exactly covered when I taught series. And I like your rabbit mic haha

    • @brownwater6212
      @brownwater6212 4 ปีที่แล้ว +1

      It's not a mic.

    • @drpkmath12345
      @drpkmath12345 4 ปีที่แล้ว +1

      BrownWater oh not? Haha thought it was lol

    • @brownwater6212
      @brownwater6212 4 ปีที่แล้ว +2

      @@drpkmath12345 😂 yeah, he's wearing the mic on his shirt.

    • @drpkmath12345
      @drpkmath12345 4 ปีที่แล้ว +1

      BrownWater haha why did I think he was holding a rabbit mic lol

    • @jagatiello6900
      @jagatiello6900 4 ปีที่แล้ว +1

      That was bunny...i mean, funny

  • @justinbastow4292
    @justinbastow4292 3 ปีที่แล้ว

    cos(sqrt(x))=0
    sqrt(x)=pi*n-(1/2)
    square and foil and
    x=(pi*n)^2-pi*n+(1/4)
    general solution

  • @mtaur4113
    @mtaur4113 4 ปีที่แล้ว

    i sqrt(x) = pi/2 + z pi = {..., -3pi/2, -pi/2, pi/2, 3pi/2, ...}
    When you square both sides, -x = {pi^2/4, 9pi^2/4, 25 pi^2/4, 49 pi^2/4, ...}
    The given solution is the largest (i.e. least negative), when you multiply by -1 to get it.

  • @williamperezhernandez7331
    @williamperezhernandez7331 4 ปีที่แล้ว

    Clarification of biggest soln. We have Ln (-1)= i (1+2n)Pi, also cos(sqrt(-x)) = 0 has solutions sqrt(-x)=Pi (1+2n)÷2 for integer n=0,1,2,... . So general soln is x = - [Pi(1+2n)]^2/4. However, since x is negative, the biggest soln corresponds to n=0, therefore x = - (Pi/2)^2.

  • @みゅうすたー-w4s
    @みゅうすたー-w4s 4 ปีที่แล้ว

    日本からこんにちは。
    日本でもほとんどの大学でオンライン授業となり、従って時間がいつもより余ります。そんな中であなたの動画を見させてもらってます。 いつもありがとうございます。
    共に乗り越えていきましょう!

    • @anononymousarora9929
      @anononymousarora9929 4 ปีที่แล้ว

      TRANSLATION: Hi I am from Japan.

      Most universities in Japan offer online classes, so one has more time than usual. I am watching your videos in this situation. I am always grateful for your help.
      Let's overcome this together!

  • @pacolibre5411
    @pacolibre5411 3 ปีที่แล้ว

    Serious question: What is the domain of cosh(sqrt(x))? On the one hand, it should be x>=0 because of the ‘x’ under the root, but on the other hand, the function has a real number output for all x, so it should be all real x.

  • @VSP4591
    @VSP4591 3 ปีที่แล้ว

    Excelent. Both ways are so clever. Congratulation.

  • @guardofrr
    @guardofrr 4 ปีที่แล้ว

    Very nice video explaining the trivial with a twist.

  • @getsugatenshoFTW
    @getsugatenshoFTW 4 ปีที่แล้ว +4

    That equation looks like the series for e^x

  • @amirakhter7983
    @amirakhter7983 4 ปีที่แล้ว

    You explain in an amazig way,,, i love it

  • @itspatrick2028
    @itspatrick2028 4 ปีที่แล้ว +5

    Hey bprp! I have a question
    Why, in the complex way, replacing ln(-1) with ln(i²) wouldn't work? This would lose us the Pi we need to get to the final answer. Maybe someone can explain it to me :)

    • @angelmendez-rivera351
      @angelmendez-rivera351 4 ปีที่แล้ว +5

      itspatrick It does work, though. log(i^2) = 2·log(i) = 2·πi/2 = πi = log(-1).

    • @itspatrick2028
      @itspatrick2028 4 ปีที่แล้ว +3

      @@angelmendez-rivera351 thank you! I was dumb for a moment , thanks for helping me out!

  • @classyjohn1923
    @classyjohn1923 4 ปีที่แล้ว

    I love complex numbers. Things just work! Complex > Reals all day

  • @satyapalsingh4429
    @satyapalsingh4429 4 ปีที่แล้ว

    Really very good professor . I like both the methods .

  • @demonslayer4607
    @demonslayer4607 4 ปีที่แล้ว +1

    Brother, tell me any trick to remember cosx, sinx, logx,.... All series? I need them for jee main exam.

  • @MS-cj8uw
    @MS-cj8uw 4 ปีที่แล้ว +1

    Cosh is beautiful......thank you ❤

  • @jntnayem1394
    @jntnayem1394 4 ปีที่แล้ว +1

    sir, i have a question. we can write ln1=0, can we write ln1=2iπ??
    ln1=ln i^4= 4 ln i = 4.iπ/2 = 2iπ
    another one,
    e^iπ=-1
    iπ= ln(-1)
    2iπ=2ln(-1)
    2iπ=ln1=0
    that means 2iπ=0
    is it right or wrong????

    • @Aruthicon
      @Aruthicon 4 ปีที่แล้ว +2

      This is the problem with using complex logarithms: since the exponential function is periodic (because it includes cos + i sin), the logarithm of a number is not uniquely defined, or in other words it’s a multi-valued relation.
      In order to keep the logarithm useful as a function, it’s necessary to restrict its range by taking the *principal value* of the logarithm, which means the imaginary part must be in [0, 2π), or alternatively (-π, π].
      If you use a Taylor series centered at z = 1, you’ll end up with the second one, I think.
      Either way, you should never get 3πi as a value.
      Sometimes, it’s useful to have all possible values of the logarithm. In that case, you could get away with saying that 2πi is equal to 0 *up to a constant multiple* of 2πi.
      So, for example, you could have 11πi = πi + 2πki for some integer k, in this case k = 5.
      That means that ln 1 = 2πki, and ln(-1) = πi + 2πki.
      It’s probably better, though, to say that e^2πki = 1, rather than ln 1 = 2πki.

    • @jntnayem1394
      @jntnayem1394 4 ปีที่แล้ว

      @@Aruthicon thanks

  • @ccantonyhk
    @ccantonyhk 4 ปีที่แล้ว +2

    the expression is equal cos(i√x)

  • @52.yusrilihsanadinatanegar79
    @52.yusrilihsanadinatanegar79 4 ปีที่แล้ว +24

    Oreo the bunny
    😭

  • @rrr1304
    @rrr1304 4 ปีที่แล้ว +3

    Same question as asked in kvpy exam (India)

  • @cpotisch
    @cpotisch 4 ปีที่แล้ว +2

    Great vid, as always. Aren’t your two methods really just the equivalency of cos(ix) and cosh(x)? cos(sqrt(-x)) = cos(isqrt(x)), which therefore equals cosh(sqrt(x)).

    • @blackpenredpen
      @blackpenredpen  4 ปีที่แล้ว +2

      Yes. And I said that in the end too : )

    • @cpotisch
      @cpotisch 4 ปีที่แล้ว +1

      blackpenredpen Ah, so you did. 🤦‍♂️

  • @djvalentedochp
    @djvalentedochp 4 ปีที่แล้ว

    Both methods are awesome, nice video!

  • @NavyBlueMan
    @NavyBlueMan 4 ปีที่แล้ว

    Not a particularly hard problem, but a fun one to work through - find the value A such that A^x = x^A at exactly one point without crossing

    • @angelmendez-rivera351
      @angelmendez-rivera351 4 ปีที่แล้ว

      Austin I am not sure that is possible, unless you are restricting yourself to a proper subset of the real numbers.

    • @angelmendez-rivera351
      @angelmendez-rivera351 4 ปีที่แล้ว

      Let A be an element of the interval ]0, ♾[, and let x be an element of the real numbers except zero. x^A = A^x is equivalent to A·log(x) = x·log(A) if x > 0, and A·log(-x) = x·log(A) if x < 0. These are equivalent to log(x)/x = log(A)/A if x > 0 and log(-x)/(-x) = -log(A)/A if x < 0. It should be noted that 1/x = e^[-log(x)], while 1/(-x) = e^[-log(-x)]. Therefore, [-log(x)]·e^[-log(x)] = -log(A)/A if x > 0, and [-log(-x)]·e^[-log(-x)] = log(A)/A if x < 0. These equations translate to -log(x) = W[n, -log(A)/A] if x > 0, and -log(-x) = W[n, log(A)/A]. The W[n, x] map has a branch point at x = -1, such that W[-1, -1] = W[0, -1] = W[+1, -1], and since these are the only real valued branches, it must be the case that log(A)/A = -1 if x < 0, or log(A)/A = 1 if x > 0.
      log(A)/A = -1 implies log(A)·e^[-log(A)] = -1, which implies [-log(A)]·e^[-log(A)] = 1. Therefore, W(1) = Ω = -log(A) = log(1/A). This implies A = Ω. This is consistent with the domain of x |-> W(0, x), since -log(A) > 0.
      log(A)/A implies W(-1) = -1/e = -log(A), which implies 1/e = log(A), or simply A = e^(1/e).
      Therefore, A = e^(1/e), or A = Ω.

  • @Peter_1986
    @Peter_1986 4 ปีที่แล้ว

    Go! Go! Power Series!
    Mighty Mathy Power Series!

  • @andreasgierstorfer8046
    @andreasgierstorfer8046 4 ปีที่แล้ว +1

    Hey, I didn't know Miffy does Math!
    Or Nijntje, as she is known in her home country, The Netherlands

  • @mbowenixivono5857
    @mbowenixivono5857 4 ปีที่แล้ว +3

    Nice bro 👍

  • @anhkhoivo3893
    @anhkhoivo3893 4 ปีที่แล้ว

    I like both, they are really interested!!.

  • @ProactiveYellow
    @ProactiveYellow 4 ปีที่แล้ว

    Doesn't cos(-π/2)=0? Why are we choosing the smallest positive value when negative values also work? It would yield no solution that way, but is that not also correct? Because x=(2n-1)π/2 where n is an integer would be the solution family, and it has no upper bound

  • @monsterprince3928
    @monsterprince3928 4 ปีที่แล้ว +1

    plz find general term for sum √1+√2+√3+...√n

  • @jean-philippe7268
    @jean-philippe7268 4 ปีที่แล้ว +3

    I was too much focussed on what you were doing that I only saw the rabbit mic at the end...

  • @VaradMahashabde
    @VaradMahashabde 4 ปีที่แล้ว +1

    That bunny senpai should write my exams

  • @shapagataisaghali4457
    @shapagataisaghali4457 4 ปีที่แล้ว

    Please, integral of x/sinx definite from zero to pi over 2

  • @skyrider8890
    @skyrider8890 4 ปีที่แล้ว

    Why are the factorial parts not in square roots?

  • @nolong2284
    @nolong2284 3 ปีที่แล้ว

    If x=1, then cos(i) = 1+1/2!+1/4!+...
    Does this make any sense?
    Super interesting!!!

  • @azhakabad4229
    @azhakabad4229 4 ปีที่แล้ว +6

    Hey bro Is Riemann hypothesis solved? Or you are still trying!

  • @cameronspalding9792
    @cameronspalding9792 4 ปีที่แล้ว

    Cosh (sqrt x)

  • @anhkhoivo3893
    @anhkhoivo3893 4 ปีที่แล้ว

    anyway, could you solve the problem? Show that: lim_(n -> +inf) [ ln(2) - ( -1/2 + 1/3 - 1/4 + ... - (-1)^n / n ) ]^n = sqrt(e).
    source: made by D.M.Batinetu and Neculai Stanciu.
    p/s: I am sorry if my typing makes you read hard.

  • @DaanSnqn
    @DaanSnqn 4 ปีที่แล้ว

    The result is just unreal

  • @wilamlu1433
    @wilamlu1433 4 ปีที่แล้ว

    the second method is like magic

  • @a_nurramadhanisaputri574
    @a_nurramadhanisaputri574 4 ปีที่แล้ว +1

    I like it!

  • @emersongrtcg
    @emersongrtcg 4 ปีที่แล้ว +1

    I tried to find cos 3º using cosh and I found cos 3º = (-1)^(1/60).
    It looks like I cant assume -1 = (-1)^15 and (-1)^(1/60)=[(-1)^15]^(1/60)=(-1)^(15/60)=(-1)^(1/4)=sqrt(i). Why not?

    • @not_vinkami
      @not_vinkami 4 ปีที่แล้ว +3

      When you're finding 3°, you look for the *principal value* of (-1)^(1/60). But if you replace -1 with any of its odd number powers, you're not finding the principal value of it anymore.
      sqrt(i) is a solution of x^60+1=0, but it's just not the value you normally want

    • @not_vinkami
      @not_vinkami 4 ปีที่แล้ว +2

      And to find cos(3°), what you want more is the angle sum (difference) formula for cosh, using 18°-15°=3° or anything you found useful to produce the 3°

  • @beporoaboyz4281
    @beporoaboyz4281 4 ปีที่แล้ว +1

    When he says, "Here's the DEAL"...:P

  • @CodeInfo342
    @CodeInfo342 4 ปีที่แล้ว

    Cool,ur genius !!!!!

  • @duggydo
    @duggydo 4 ปีที่แล้ว +1

    You ask which I like more?? I like both equally! However, I am not a yarn rabbit ;)

  • @KiWi13th
    @KiWi13th 4 ปีที่แล้ว

    Odd terms of cosine of square root negative x power series: We were bad but now we're good

  • @kinshuksinghania4289
    @kinshuksinghania4289 4 ปีที่แล้ว

    That's cool!!! 👍

  • @creepykong4222
    @creepykong4222 4 ปีที่แล้ว +1

    Why always holding something in your left hand?

    • @green0563
      @green0563 4 ปีที่แล้ว

      Usually it's a mike in his hand.

  • @luhdooce
    @luhdooce 4 ปีที่แล้ว

    Is it possible to do something like the i-th tetration of i? Or instead, some irrational number tetration of a number

    • @angelmendez-rivera351
      @angelmendez-rivera351 4 ปีที่แล้ว

      LuhDooce In theory, yes, but such a thing is impossible to evaluate and calculate analytically. You can never express such an operation in any closed-form.

  • @klausolekristiansen2960
    @klausolekristiansen2960 4 ปีที่แล้ว

    Unreal!

  • @agytjax
    @agytjax 4 ปีที่แล้ว +1

    Why can't cos(-sqrt(x)) be written as cos(i*sqrt(x)) ? Then i*sqrt(x) = pi/2 => sqrt(x) = -i*pi/2 => x = - pi^2/4

    • @pyrotricks1168
      @pyrotricks1168 4 ปีที่แล้ว

      Because that's an arbitrary step that takes longer to reach the same solution

    • @JoseFernandes-js7ep
      @JoseFernandes-js7ep 4 ปีที่แล้ว

      He solved it the "real way". That would be turned into a "complex way".

  • @guyguy1811
    @guyguy1811 4 ปีที่แล้ว +2

    Imaginary way is always cooler

  • @mahmoudmroweh7730
    @mahmoudmroweh7730 4 ปีที่แล้ว

    incredible !!!!!!!!!

  • @PhysicswithDrAbdullah
    @PhysicswithDrAbdullah 4 ปีที่แล้ว

    Very good

  • @prajjwalvish9842
    @prajjwalvish9842 4 ปีที่แล้ว

    Can you please solve this integral Cos^(-1) { (x+1)/√(x^2 +2x +5) } .dx

  • @VaradMahashabde
    @VaradMahashabde 4 ปีที่แล้ว

    Technically aren't there infinte complex solutions for x? Now complex numbers are not ordered but even the magnitude of the solutions maybe taken to infinity

    • @waqarmirza8372
      @waqarmirza8372 4 ปีที่แล้ว

      The solutions are infact all real, and there are infinitely many. The general form is x=-π²(n+0.5)² ∀n∈Z. In the video he has taken the special case of n=0.

  • @nirajabcd
    @nirajabcd 4 ปีที่แล้ว

    Give this man a giant black(white)-board..

  • @robertoaurelionicastro2660
    @robertoaurelionicastro2660 4 ปีที่แล้ว +1

    You are the best, I love you

  • @oguzhantopaloglu9442
    @oguzhantopaloglu9442 4 ปีที่แล้ว +1

    very cool bro

  • @davedonnie6425
    @davedonnie6425 4 ปีที่แล้ว

    I understand that if the infinitely many solutions are clustered in about the same place, then you could have a biggest solution. But how can you be _sure_ of that? How can you be _sure_ there is even a biggest solution? Also, how can you be sure you found the biggest solution, and not just a solution in the middle?

    • @green0563
      @green0563 4 ปีที่แล้ว +2

      We need Cos of something to be zero, then that something (which is √-x here) must be an odd multiple of π/2, like -π/2, 3π/2, -3π/2, 5π/2, 7π/2, etc. Squaring them all, you have the possible values for -x being π^2/4, 9π^2/4, 25π^2/4, etc. Multiply both sides by -1, you get the possible values of x: -π^2/4, -9π^2/4, -25π^2/4, etc. It's easy to see that the greatest of these is -π^2/4.

    • @angelmendez-rivera351
      @angelmendez-rivera351 4 ปีที่แล้ว

      Green05 Exactly.

  • @Karimkarim-mr2lf
    @Karimkarim-mr2lf 4 ปีที่แล้ว

    Good .i like it

  • @krishgupta6518
    @krishgupta6518 4 ปีที่แล้ว

    The first was more good

  • @rashmigupta6227
    @rashmigupta6227 4 ปีที่แล้ว

    Yeah

  • @Felipe.Taboada.
    @Felipe.Taboada. 4 ปีที่แล้ว

    the bunny mic is just great.

  • @joelmoisesburgoscontreras1888
    @joelmoisesburgoscontreras1888 3 ปีที่แล้ว

    Tienes excelentes videos, pero dónde están los subtítulos :(

    • @joelmoisesburgoscontreras1888
      @joelmoisesburgoscontreras1888 3 ปีที่แล้ว

      Alguien que me recomiende una página para aprender este idioma, por favor.
      Me encantan estos videos

  • @jancerlima1183
    @jancerlima1183 4 ปีที่แล้ว +1

    How sqrt(x^6) = x^3 ??? 1:50

    • @shimotakanaki
      @shimotakanaki 4 ปีที่แล้ว

      6=2*3, sqrt(x^6) = sqrt(x^(2*3)) = sqrt((x^3)^2) = x^3

  • @Mathematica1729
    @Mathematica1729 4 ปีที่แล้ว

    Nice video

  • @ssdd9911
    @ssdd9911 4 ปีที่แล้ว +2

  • @caution3905
    @caution3905 4 ปีที่แล้ว

    The outro song is hype.

  • @TDSONLINEMATHS
    @TDSONLINEMATHS 4 ปีที่แล้ว

    Nice

  • @happydmitry
    @happydmitry 4 ปีที่แล้ว

    Hilarious with that rabbit, you remind me Mr Harrison

  • @xyrenegade
    @xyrenegade 4 ปีที่แล้ว +1

    Is that a force of habit why are you holding that wabbit hahaha

  • @mutesniperr
    @mutesniperr 4 ปีที่แล้ว

    Non real method is more Elegant

  • @themsk9923
    @themsk9923 3 ปีที่แล้ว

    First is easy 👍

  • @hamsterdam1942
    @hamsterdam1942 4 ปีที่แล้ว

    you cannot imply the "biggest" property to complex numbers

  • @aneesh1701
    @aneesh1701 4 ปีที่แล้ว +2

    Omg the bunny is a mic, isn't it?

  • @nafissaatlagh206
    @nafissaatlagh206 4 ปีที่แล้ว +1

    For wat its worth besides ur videos I love ur chenglish as well uwu

  • @hamidkh5488
    @hamidkh5488 4 ปีที่แล้ว

    x can't be positive . so we can use x = - ( t^2)

  • @tambuwalmathsclass
    @tambuwalmathsclass 4 ปีที่แล้ว

    What is your real name ?

  • @gurindersinghkiom1
    @gurindersinghkiom1 4 ปีที่แล้ว

    Nice.....

  • @alphonsetyche3278
    @alphonsetyche3278 4 ปีที่แล้ว

    I just remembered the hyperbolic function..............

  • @rahmet1.618
    @rahmet1.618 4 ปีที่แล้ว

    Pozitif everybody happy😂😂

  • @theamazingguy150
    @theamazingguy150 4 ปีที่แล้ว

    I don't get why you chose π/2 for the real solution,

  • @purim_sakamoto
    @purim_sakamoto 3 ปีที่แล้ว

    ふぇああ
    基本の冪級数展開の形は暗記なんですね😂メドイ

  • @IsaiasMasetti
    @IsaiasMasetti 4 ปีที่แล้ว

    No-real is my preference.

  • @brownwater6212
    @brownwater6212 4 ปีที่แล้ว +4

    Ah yes, the bunny is back :)

  • @denervieira5650
    @denervieira5650 4 ปีที่แล้ว

    I always think that the guys who found those relations were in a quarentene or something like that. How could someone think about cosh(x) ???? What the f**k...

  • @pedromelo3069
    @pedromelo3069 4 ปีที่แล้ว

    The rabbit knows more math than me

  • @moonwatcher2001
    @moonwatcher2001 4 ปีที่แล้ว

    You changed the thermonuclear detonator for a bunny!!! Mmmmm. Anyway, excellent video, thanks