Brownian Motion-I

แชร์
ฝัง
  • เผยแพร่เมื่อ 2 ม.ค. 2025

ความคิดเห็น • 41

  • @samuelhanson7414
    @samuelhanson7414 5 ปีที่แล้ว +47

    My Professor actually take his notes from here😹, I’m done going to his class

    • @roberthuber2770
      @roberthuber2770 6 หลายเดือนก่อน

      Once you have found the IIT lecture you have found the source 😄

  • @bhaktikasaar3115
    @bhaktikasaar3115 3 ปีที่แล้ว +14

    Please make more videos Professor.
    The way you explain theoretical concepts are just amazing.

  • @lebagnard6018
    @lebagnard6018 6 ปีที่แล้ว +7

    This man is brilliant ! !Thank You !

  • @lifeisbutavapor9396
    @lifeisbutavapor9396 3 ปีที่แล้ว +5

    I have to do a lecture on this myself as a grad student TA. Taking notes on his organization of the material. I also like the way he effectively utilizes board space which is something I have yet to get the hang of. He is obviously a master lecturer - the kind that made me motivated to study physics in the first place.

  • @zichaowang8617
    @zichaowang8617 6 ปีที่แล้ว +10

    phenomenal, this is 10x better my professor

  • @ermario2055
    @ermario2055 ปีที่แล้ว

    24:05 Quadratic Variation and variance

  • @whozz
    @whozz 3 ปีที่แล้ว +7

    - Great lecture
    - Subtitles are available
    10/10

  • @juanjacobomoracerecero6604
    @juanjacobomoracerecero6604 5 ปีที่แล้ว +2

    Very good professor.

  • @HHAashish
    @HHAashish 4 ปีที่แล้ว +4

    Bhagwan apko lambi umar de bhai

  • @christophsattler2881
    @christophsattler2881 6 ปีที่แล้ว +2

    This is brilliant. Thank You!

  • @MrJewZie
    @MrJewZie 5 ปีที่แล้ว +3

    17:09 Could anyone explain how he calculated the variance?

    • @varrien4310
      @varrien4310 5 ปีที่แล้ว +4

      If i am not mistaken :
      Prof used the formula Var(X) = Sum of {each X Squared multiplied by its Probability } minus (Mean of X Squared) .
      True for all J
      Here the subscript is J, J could be 1 to what ever but each time probability remains 0.5 and each outcome value always ends up as positive 1 ( after squaring too for the initial -1 X values) , so in total always 0.5 time 1 plus 0.5 times 1 ,adding upto 1 .

    • @안또잉-x9f
      @안또잉-x9f 5 ปีที่แล้ว +1

      if you think that discrete times k_i+1, k_i are not adjacent like 10s, 4s, you may could solve this problem. if k_i+1, k_i is adjacent time, k_i+1-k_i implies 1

    • @pavankumarpolisetty872
      @pavankumarpolisetty872 4 ปีที่แล้ว

      @@안또잉-x9f but how it comes to var(K_i+1,K_i) comes to K_i+1-K_i at 17:03 of this video???

    • @안또잉-x9f
      @안또잉-x9f 4 ปีที่แล้ว +2

      @@pavankumarpolisetty872 i think you mean Var(M_i+1 - M_i). Var(M_i+1 - M_i)= , k is increment index in time btw i+1 and i. Obiously X_k^2 =1 for all k and < X_i X_j > = kronekerdelta ij ( because X is iid). so Var(M_i+1 - M_j) is proportinal to time(= number of increments). This is characteristic behavior of brownian motion

    • @dhruvvansrajrathore2148
      @dhruvvansrajrathore2148 3 ปีที่แล้ว

      @@안또잉-x9f Var(M_{k_{i+1}}-M_{k_{i}})=Var(sum(X_{j}) = sum(Var(X_{j}) (where j runs from k_{i} to k_{i+1}) using the fact variance of sum of independent random variable is just the sum of variances.

  • @christabellendwiga697
    @christabellendwiga697 3 ปีที่แล้ว +2

    These tutorials are so elaborate and easy to understand that I don't want to read those complex books anymore. I'll definitely recommend my peers here

  • @girigupta
    @girigupta 3 ปีที่แล้ว +2

    does anyone has the pdf of the notes prof is following ?

  • @samirelhajhouj9293
    @samirelhajhouj9293 2 ปีที่แล้ว

    THANK YOU PROFESSOR I DONT UNDERSTAND WHY nt is integer

  • @aliabdulhassanabbas3038
    @aliabdulhassanabbas3038 ปีที่แล้ว +2

    How can I communicate with this man

  • @radiatouhami8364
    @radiatouhami8364 5 ปีที่แล้ว

    Thanks it's very nice

  • @samahirrao
    @samahirrao 10 หลายเดือนก่อน

    We have enough maths, we need something else as humans. May be we need to a random walk as a civilization.😅

  • @EVTV_India
    @EVTV_India 7 ปีที่แล้ว +10

    He is saying exponential for E . I think it's expectation

    • @nimaweb
      @nimaweb 4 ปีที่แล้ว +4

      He immediately corrected himself though

  • @haadialiaqat3427
    @haadialiaqat3427 5 ปีที่แล้ว +1

    Excellent sir

  • @liamhoward2208
    @liamhoward2208 2 ปีที่แล้ว +1

    Does Brownian Motions predictive power within the financial domain lie in its ability to be scaled continuously? Is there a difference of prediction power between very large and very small time scales?

  • @islamelbaz7232
    @islamelbaz7232 5 ปีที่แล้ว

    You are great sir ...

  • @mmoore9954
    @mmoore9954 ปีที่แล้ว

    14:40

  • @kayjaysok
    @kayjaysok ปีที่แล้ว

    So its Carthesian.. linear
    I disagree 8:44 100%

  • @galgamech7769
    @galgamech7769 2 ปีที่แล้ว

    but is the market has a fair experiment like coin toss , No there're many biases envoles such as Market Regulators (goverments, Central banks ...) economic status , and more other variables leads to a bias in period t and t+n
    So I guess the modeling of market random walk need to be more accurate .
    thank you anyway for sharing this knowledge

    • @pastorofmuppets7654
      @pastorofmuppets7654 7 วันที่ผ่านมา

      That's a random walk with a drift or a trend. One can model the drift as another mean process

  • @niazghumro2350
    @niazghumro2350 4 ปีที่แล้ว

    Nice explanation prof

  • @GaryRichardson-x9x
    @GaryRichardson-x9x 2 หลายเดือนก่อน

    Hall Anthony Thomas Angela Anderson Gary

  • @enginmayadag2608
    @enginmayadag2608 3 ปีที่แล้ว

    he is excellent except his looking the notes. yes prof.????

  • @AmilaSiriwardana
    @AmilaSiriwardana 4 ปีที่แล้ว

    im 12'