🔵11 - Homogeneous First Order Differential Equations (Solved Examples)

แชร์
ฝัง
  • เผยแพร่เมื่อ 19 ม.ค. 2025

ความคิดเห็น • 31

  • @kakabraza8869
    @kakabraza8869 ปีที่แล้ว +5

    You out here saving lives. Really glad i found this channel thanks a lot fam

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  ปีที่แล้ว +1

      You are very welcome, Kaka. Thanks so much too. Where do you watch from?

    • @kakabraza8869
      @kakabraza8869 ปีที่แล้ว +1

      @@SkanCityAcademy_SirJohn I'm from 🇰🇪

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  ปีที่แล้ว +1

      @kakabraza8869 oh really, Kenya. Nice.
      Text me on +233243084034- WhatsApp

  • @wondifrawterefe9177
    @wondifrawterefe9177 9 หลายเดือนก่อน +2

    if we use the constant c instead of ln(c) the answer will be different . so which one is correct

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  9 หลายเดือนก่อน +1

      Well, the answer will indeed be different, but, most importantly, you should understand that there is always a constant of integration after you perform integration.
      Meanwhile the constant value is not important here.
      What matters is c is a constant, and ln(c) is also a constant.
      For simplicity, you can let c1 be ln(c).

  • @thee_pauline
    @thee_pauline 3 หลายเดือนก่อน +1

    Why is lnc on the left and not the right?

  • @Kelvin-c7s
    @Kelvin-c7s ปีที่แล้ว +1

    I want to get something right here, so if you find out the equation is homogeneous then we do substitution before preceeding to the method of separations.

  • @obedaboagye5161
    @obedaboagye5161 3 หลายเดือนก่อน +1

    The degree of the third example was not stated? Or its not needed in this instance ?

  • @GillsOsei-be5kl
    @GillsOsei-be5kl 10 หลายเดือนก่อน +1

    Thanks so much for your videos, but please why do you use ln(c) instead c after the integration, is it the same?

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  10 หลายเดือนก่อน +1

      You are most welcome and thanks for watching too. Because we integrated 1/x which is In(x) it's just fine to make the constant of integration In (c) instead of c. They are not the same, I mean In(c) is not = c, but they are all constants.

  • @edwardwiafeaidoo1620
    @edwardwiafeaidoo1620 11 หลายเดือนก่อน +1

    Please what if we have more than two terms containing x and y. How will you go about it?

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  11 หลายเดือนก่อน

      You first need to check if it's homogeneous, if not, you need to use a different differential method...

    • @edwardwiafeaidoo1620
      @edwardwiafeaidoo1620 11 หลายเดือนก่อน +1

      @@SkanCityAcademy_SirJohn oh ok thank you

  • @ephraimdanso4435
    @ephraimdanso4435 ปีที่แล้ว +1

    My guy you're very good 😮
    Keep it up bro

  • @magbomajoshua1585
    @magbomajoshua1585 10 หลายเดือนก่อน +1

    Thanks a lot❤🎉

  • @SALIMAWEDADIBAMADDAH
    @SALIMAWEDADIBAMADDAH ปีที่แล้ว +1

    please can v be replace by any other variable in the equation y=vx

  • @risingstars_el
    @risingstars_el ปีที่แล้ว +1

    great explanations

  • @peaceofmind9775
    @peaceofmind9775 ปีที่แล้ว +2

    why is it that you made y=vx?

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  ปีที่แล้ว +7

      The homogenous equation is not separable, but to make it separable, we need to do substitution y=vx and y' = v + xv' to make the differential equation separable in terms of v and x

  • @AberaOlika
    @AberaOlika ปีที่แล้ว +1

    thanks💓💓💓

  • @jekoniandemulunda7769
    @jekoniandemulunda7769 ปีที่แล้ว +1

    I doubt your answer for Example 2, becase you was suppoused to replace back c^2, when using the initial condition, for now you just found the value of c_1, the one you introduced.

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  ปีที่แล้ว

      I get your point. But the solution is correct, once we have introduced c1 as c1 = c², c² will surely be c1 = 2.
      Try substituting it at the line after where we let c² = c1.
      You are going to get the same expression finally in terms of y².

    • @SkanCityAcademy_SirJohn
      @SkanCityAcademy_SirJohn  ปีที่แล้ว

      Any ways, it's a good observation you made. I wish you could try it and get back to mee